Electron density at the subsolar magnetopause for high magnetic shear: ISEE 1 and 2 observations

D. Hubert and C. C. Harvey
Département de Recherche Spatiale, Observatoire de Paris, Meudon, France

M. Roth and J. De Keyser
Belgian Institute for Space Aeronomy, Brussels

Abstract. The ISEE radio wave propagation electron density experiment allowed the determination of the integrated electron density between the ISEE 1 and ISEE 2 satellites at the relatively high rate of 8 or 32 Hz. When the component of the spacecraft separation vector in the direction of the normal to the magnetopause is significantly smaller than the thickness of the current layer, this data set allows the internal structure of the magnetopause to be studied and compared with theoretical predictions. For a particular triple subsolar magnetopause crossing with high magnetic shear, an electron density overshoot is observed in the current layer adjacent to the magnetosheath. The similarity of the three crossings indicates that the internal structure of the magnetopause does not change dramatically during the time interval considered. A superposed epoch analysis of these crossings is consistent with the density profile obtained from kinetic simulations. The general relationship between magnetic field asymmetry, magnetic field rotation angle and electron density overshoot is discussed. It is concluded that a density overshoot could be a typical feature of the subsolar magnetopause with high magnetic shear. This conclusion is supported by two other dayside magnetopause crossings for which high time resolution electron density data are available.

1. Introduction

The study of the structure and dynamics of the Earth's magnetopause current layer (MCL) is fundamental to understanding the coupling between the solar wind and the magnetospheric environment. The simplest model of the MCL is a tangential discontinuity (TD) within which the magnetic field rotates from an arbitrary interplanetary direction to the magnetospheric direction. The Vlasov kinetic approach has been used in the past to describe the inner structure of the TD magnetopause with different degrees of sophistication [e.g., Roth, 1978, 1979; Lee and Kan, 1979; Roth et al., 1996]. In recent work by Kuznetsova and Roth [1995] (hereafter referred to as the KR model) this approach was used to study the stability of magnetic surfaces with respect to spontaneous excitation of collisionless tearing perturbations within MCLs characterized by large angles of magnetic field rotation \(\theta \) (\(\theta \geq 60^\circ \)) and asymmetrical magnetic field profiles. These unperturbed MCLs were also characterized by the absence of shear in the plasma flow, and so they may be typical of the dayside magnetopause near the stagnation point for various orientations of the interplanetary magnetic field (IMF). In the KR model, the structure of the unperturbed asymmetrical MCLs is determined only by the magnetic field rotation angle \(\theta \) and the magnetic field asymmetry factor \(\kappa_B = (B_{\text{msph}} - B_{\text{msh}})/B_{\text{msph}} \), where \(B_{\text{msph}} \) and \(B_{\text{msh}} \) are respectively the magnetic field intensities in the adjacent magnetosphere and magnetosheath regions. This model predicts the electron density profile through the unperturbed MCL as a function of the two parameters \(\theta \) and \(\kappa_B \). The main characteristic is an enhancement of the electron density in a region of the MCL adjacent to the magnetosheath with a thickness of a few ion Larmor radii; this enhancement decreases with increasing magnetic field asymmetry factor \(\kappa_B \), but increases with the magnetic field rotation \(\theta \) [see Kuznetsova and Roth, 1995, Figure 2].

To our knowledge, the prediction of an enhancement of the density through the MCL has never been substantiated by observation. The enhancement in the plasma density near the stagnation streamline just in front of the magnetopause observed by Song et al. [1990] is a phenomenon inherent to the inner magnetosheath [Song et al., 1992; Zhang et al., 1996]. On the average this structure is about 0.4 RE thick and clearly separated from the magnetopause. Nevertheless, the analysis of Song et al. [1990] displays some events of short duration adjacent to the magnetopause. Although many spacecraft magnetometers can sample the vector magnetic field more than 15 times per second, the plasma velocity distribution functions can not be sampled with comparably high resolution by classical spaceborne particle spec-
trometers, whose typical interval separating independent
density determinations is of the order of 1 s. Observation and
analysis of the fine structure of the magnetopause, however,
become possible when both plasma and field data have simi-
lar high temporal resolution. This requires another technique
for measuring plasma parameters. The radio propagation
experiment of the Paris Observatory, which determines the
mean electron density between the ISEE 1–2 pair of satel-
rites, has a sampling frequency of 8 Hz in low bit rate or
32 Hz in high bit rate, twice that of the magnetometer (4 or
16 Hz, respectively) [Harvey et al., 1978]. Measurements
made by this instrument have motivated us to look for observ-
izational evidence of the density enhancements predicted by
the KR model.

To distinguish the observational properties characteristic
of the magnetopause from those characteristic of the inner
magnetosheath, we analyze the mean electron density data
when the ISEE 1–2 separation distance was small. The ra-
dio propagation experiment determines the mean interspace-
craft electron density; this is nearly equal to the local den-
sity when the distance of separation is significantly lower
than the typical wavelength of the density fluctuations; else-
where, correction factors may be used (D. Hubert et al., Na-
ture, properties, and origin of low-frequency modes from
an oblique shock to the inner magnetosheath, submitted to
Journal of Geophysical Research, 1996). The magnetic field
data measured by the UCLA fluxgate magnetometers [Rus-
sell, 1978] are used to identify the magnetopause crossings.
In section 2 we present the observations, which we compare
with theoretical model predictions in section 3. The paper
ends with a discussion.

2. Observations

Figure 1 shows an overview of the triple crossing of the
magnetopause observed by ISEE 1 and 2 on August 30, 1981
(day 242) between 1444 and 1453 UT, when the spacecraft
were on the outbound leg of the orbit, near the Sun-Earth
line, at a GSM local time of 1235 and a latitude of 1°N. This
is close to the stagnation point where the plasma flow on ei-
ther side of the magnetopause is expected to be small. The
magnetopause passed over the spacecraft three times during
this interval, at a radial distance of 10.7 R_E from the Earth.
The separation between the spacecraft was 260 km, with
ISEE 2 leading ISEE 1. Figures 1a–1c display the magnetic
field components measured by ISEE 2 (the leading satellite)
and Figures 1e–1g those measured by ISEE 1 (the trailing
satellite). The fields are displayed in the boundary normal
LMN coordinate system [Russell and Elphic, 1979] deter-
mined near 1450 UT when ISEE 2 was crossing the mag-
netopause: \(\mathbf{n} = (0.99, 0.02, 0.12) \) in GSE coordinates. At
1450 UT the position of ISEE 2 with respect to ISEE 1 was
(-118, 78, 220) km in LMN coordinates. The vector mag-
netic field \(\mathbf{B} \) was sampled at 16 Hz.

For each satellite, the three crossings of the magnetopause
occur in the time intervals denoted by MP1, MP2 and MP3 in
Figure 1. An observational definition of the magnetopause
appropriate for the high magnetic shear case is the following:

We demarcate the current layer as the region where \(B_t \) is be-
tween 90% of its magnetospheric value (\(B_{t,\text{msph}} \approx 58 \text{ nT} \))
and 90% of its magnetosheath value (\(B_{t,\text{msh}} \approx -45 \text{ nT} \)), that is, it is the layer where the ma-
ior part of the magnetic field jump takes place. Magneto-
spheric and magnetosheath intervals are denoted by MSPH
and MSH, respectively. (d) Sketch of the motion of the satel-
lites (dot-dashed lines) and the magnetopause (the MP re-
region between the solid lines) whose radial position \(R \) mea-
sured along the outward normal varies with time. (e–g)
Same as Figures 1a–1c. (h) Mean electron density \(N^- \) be-
tween both spacecraft; a low-pass filter was used to reduce
the noise level.

Figure 1. Overview of a multiple magnetopause cross-
ing by ISEE 1 and 2 between 1444 and 1453 UT on Au-
gust 30, 1981 (day 242). (a–c) LMN magnetic field com-
ponents measured by ISEE 2 (the leading satellite). Mag-
netopause crossings occur in the time intervals denoted by
MP1, MP2 and MP3; the magnetopause was defined as the
region where \(B_t \) is between 90% of its magnetospheric value
(\(B_{t,\text{msph}} \approx 58 \text{ nT} \)) and 90% of its magnetosheath value
(\(B_{t,\text{msh}} \approx -45 \text{ nT} \)); that is, it is the layer where the ma-
ior part of the magnetic field jump takes place. Magneto-
spheric and magnetosheath intervals are denoted by MSPH
and MSH, respectively. The three magnetopause crossings are the con-
sequence of the changing position of the magnetopause [e.g.,
Holzer et al., 1966; Song et al., 1988]. Figure 1d sketches
the motion of the satellites (dot-dashed lines) and the magnetopause (the MP region between the solid lines) whose position R along the N axis varies with time. This sketch obviously reflects the fact that ISEE 2 spends a longer time than ISEE 1 in the MSP region between the MP1 and MP2 crossings, while ISEE 1 spends a longer time than ISEE 2 in the MSPH region between the MP2 and MP3 crossings. It can be seen that the second magnetopause crossing (MP2) is the most rapid one for both satellites. We have assumed that the normal velocity of the magnetopause with respect to both satellites during this event, V_n^{MP2}, is constant. Its value is deduced from the time interval $T_{12} = 11$ s between the reversals of the B_1 component (instants when $B_1 = 0$) observed successively by ISEE 1 (1448:11) and ISEE 2 (1448:22) and from the component of the separation distance in the normal direction, $D_{12} = 220$ km; we find $V_n^{MP2} = D_{12}/T_{12} = 20$ km/s. From the mean (of the two satellites) duration of the crossing of the MP2 event (≈ 28 s) a magnetopause thickness $D \approx 560$ km is obtained, that is, a value close to the average thickness found near the magnetic equator by Berchem and Russell [1982]. With a typical proton Larmor radius in the magnetosheath $+\rho_{\text{msh}}^+$ of 50 km, we conclude that $D \approx 11\rho_{\text{msh}}^+$.

Figure 1h displays the integrated electron density N^- between the spacecraft. Local electron density fluctuations are automatically smoothed by measuring the integrated density. The frequencies ranging from $f^* = 1/T_{12}$ (0.09 Hz for the second magnetopause crossing) up to the Nyquist frequency f_{Nyquist} can therefore be ascribed mainly to experimental noise. A low-pass filter with a cutoff frequency $f_{\text{cutoff}} = 0.05f_{\text{Nyquist}}$ intermediate between f^* and f_{Nyquist} was used to reduce this noise. The temporal resolution is sufficient to analyze the fine structure of the density profiles across the magnetopause.

Although we have no plasma data other than the electron density, we will approximate the magnetopause at the time of crossing as a tangential discontinuity, since the jump (an increase or a decrease) of the electron density N^-, the change in magnitude and direction of the tangential magnetic field ($B = B_1$), and the small normal component of the magnetic field ($B_n \approx 0$), as seen in Figure 1, are compatible with the Rankine-Hugoniot conditions across a tangential discontinuity [e.g., Spreiter and Stahara, 1985]:

$$[N^-] \neq 0, \quad B_n = 0, \quad [B_1] \neq 0.$$

3. Fine Structure of the Density Profiles at the Subsolar Magnetopause

The multiple crossing of Figure 1 is studied below in more detail by performing a superposed epoch analysis. Subsequently, the observed electron density overshoot is shown to be consistent with the density profile predicted by a plasma kinetic model. Finally, we discuss the conditions for which theory predicts the presence of such an electron density overshoot.

3.1. Superposed Epoch Analysis

In order to study the variations of the magnetic field and electron number density across the three magnetopause crossings of Figure 1, we perform a superposed epoch analysis of these three crossings as recorded by ISEE 1. Implicit in this analysis is the hypothesis that the magnetopause normal velocity with respect to the satellite is constant during each crossing. This hypothesis can be broken by either strong upstream solar wind pressure variations or fast magnetopause oscillations. As the magnetopause position fluctuates over only a narrow range, the solar wind dynamic pressure variations must have been small. Very fast magnetopause oscillations seem to be absent (see the sketch of the magnetopause motion in Figure 1d). The constant velocity approximation therefore seems reasonable. The superposed epoch analysis appears to be justified, since there is a strong similarity between the individual transitions. We therefore assume that the internal structure of the magnetopause is essentially unaffected by the small solar wind dynamic pressure fluctuations. Figures 2a–2d display respectively the tangential components of the magnetic field B_m and B_t, its magnitude B, and the electron number density N^-, in terms of the x_n coordinate defining the normal distance to the TD plane, oriented outward from the magnetosphere toward the magnetosheath. To translate timescales into spatial scales, we have used our estimate of the thickness (560 km). Because the electron density measured by the wave propagation experiment gives the average value between ISEE 1 and ISEE 2, the temporal scales of the density profile across the three magnetopause crossings illustrated in Figure 1 were first shifted by half the time delay between the instants when $B_1 = 0$ as observed successively by the two satellites (this temporal shift is positive for the MP1 and MP3 crossings, and negative for the MP2 crossing). The superposed magnetopause crossings in the left panels of Figure 2 are centered on the dip of the magnetic field magnitude. The MP2 crossing is the key transition from which the timescale has been translated to the spatial scale deduced from the magnetopause thickness estimate. The MP1 and MP3 crossings are superimposed using scaling factors that produce the best superposition of the three crossings. From the superposed epoch analysis it can be seen that the MP events of Figure 1 all are very similar, in particular regarding the height and position of the electron density overshoot. This supports the scenario of the oscillating position of the magnetopause. It does not matter for the present study whether the magnetopause moves collectively, or whether a traveling surface wave leads to a local displacement of the magnetopause only. The spatial scale is expressed in proton Larmor radii in the magnetosheath (ρ_{msh}^+). Since we have no temperature data, ρ_{msh}^+ has been computed using a typical value of 300 eV for the proton temperature in the magnetosheath; this value is close to the average temperature of 3.78×10^6 K given by Phan et al. [1994] for the protons in the magnetosheath close to a magnetopause with high magnetic shear. With $D_{\text{msh}} \approx 50$ nT, one finds $\rho_{\text{msh}}^+ \approx 50$ km.

Figure 2d shows that the electron density in the MCL is
enhanced with respect to the magnetosheath. If N_M^- is the maximum electron density in the MCL, and N_{msh}^- the electron density further in the inner magnetosheath, we obtain a characterizing density factor defined by

$$\delta = \frac{(N_M^- - N_{\text{msh}}^-)}{N_{\text{msh}}^-}.$$

The values of δ corresponding to the three successive crossings of the magnetopause between 1445 and 1452 UT are $\approx 0.35, 0.45$ and 0.29 while the asymmetry factors are $\kappa_B \approx 0.16, 0.16$ and 0.22 and the angles of magnetic field rotations are successively 143°, 145° and 146°. Note that it is not easy to define the value of δ precisely; we have used the low-pass filter mentioned earlier to smooth away experimental noise first.

The number of magnetopause crossings for which ISEE 1 and ISEE 2 were sufficiently close to each other and for which the experiment operated in the right mode to yield high-resolution electron density profiles is limited. Table 1 displays the magnetic field parameters (θ, κ_B) and the electron density overshoot δ for five magnetopause crossings with high magnetic shear θ, measured on three ISEE 1-2 orbits. The values of the observed parameters κ_B vary between 0.16 and 0.35. All cases show similar density enhancements with δ between 0.29 and 0.50.

3.2. Theoretical Analysis

The profile of the electron density enhancement in Figure 2d resembles that predicted by the KR model. The KR model, however, describes a simplified kinetic Vlasov equilibrium of tangential discontinuities (TD), where, for example, all electron and proton populations are characterized by a single temperature. We therefore use a more general version of this model [Roth et al., 1996; De Keyser et al., 1996] in order to eliminate some of the simplifications.

Let the coordinates of the satellite in the LMN frame be denoted by x_i, x_m, x_n. In the hypothesis of a locally planar magnetopause, its structure is one-dimensional and can be expressed in terms of the normal coordinate x_n only. The standard procedure for solving the Vlasov equations for charged particles (of mass m and charge Ze) moving in a steady plane TD electromagnetic configuration [e.g., Longmire, 1963, chap. 5] consists of first expressing the velocity distribution functions (VDFs) as functions of the constants of motion: the particle’s energy H and canonical momenta $p = (p_t, p_m)$. The next step is to obtain the partial densities and currents as functions of the electrostatic potential ϕ and the vector magnetic potential components α_j and α_m, by integrating the VDFs over velocity space. Finally, Maxwell’s equations lead to a set of coupled ordinary differential equations for α_j and α_m, supplemented by the quasi-neutrality condition for ϕ. This set is solved numerically by means of an adaptive step ordinary differential equation integrator.

The model makes a distinction between so-called “outer” and “inner” populations. It considers four pairs of electron and proton populations: the outer and inner magnetospheric populations ($x_n < 0$) and the inner and outer magnetosheath populations ($x_n > 0$).

<table>
<thead>
<tr>
<th>Year</th>
<th>Day</th>
<th>Hour, UT</th>
<th>κ_B</th>
<th>θ</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>242</td>
<td>1446</td>
<td>0.16</td>
<td>143</td>
<td>0.35</td>
</tr>
<tr>
<td>1981</td>
<td>242</td>
<td>1448</td>
<td>0.16</td>
<td>145</td>
<td>0.45</td>
</tr>
<tr>
<td>1981</td>
<td>242</td>
<td>1450</td>
<td>0.22</td>
<td>146</td>
<td>0.29</td>
</tr>
<tr>
<td>1981</td>
<td>245</td>
<td>0105</td>
<td>0.35</td>
<td>157</td>
<td>0.50</td>
</tr>
<tr>
<td>1981</td>
<td>278</td>
<td>1308</td>
<td>0.32</td>
<td>162</td>
<td>0.50</td>
</tr>
</tbody>
</table>
The outer (magnetospheric and magnetosheath) populations each have a nonzero density on one side of the transition. The fact that the magnetosheath (magnetospheric) populations penetrate into the magnetosphere (magnetosheath) over only a limited distance implies the presence of a cutoff factor in their VDF: a part of velocity space is inaccessible for particles of magnetosheath (magnetospheric) origin (for a detailed discussion, see Roth et al. [1996]). This cutoff factor is parameterized by the transition length \(L \), which gives the typical length scale of variations in the moments of the VDF (density, current, velocity) [Roth et al., 1996; De Keyser et al., 1996, 1997; De Keyser and Roth, 1997]; it typically is a few times the gyroradius \(\rho \) of a thermal particle in the asymptotic magnetic field \((B_\infty = B_{\text{msph}} \text{ or } B_{\text{mah}} \), depending on the origin of the population).

An inner population is associated with each outer one. In order to limit the number of parameters, the model requires that an inner population have the same transition length and the same temperature as the corresponding outer population (we will comment on this hypothesis in the discussion). The difference is that an inner population has a nonzero bulk velocity, essentially a drift speed related to the \(B_1 \) gradient. A consequence of this drift speed is that the inner populations are present only inside the transition, in a layer whose characteristic length scale is \(L_d \); the drift speed of an inner population with temperature \(T \) is given by \(V_d = 2kT/ZeL_dB_\infty \) [Harris, 1961]. The inner population density at the center of the transition \(n_{n\text{inner}}(x_n = 0) \) is related to the density of the corresponding outer population at \(x_n = 0 \) \((n_{n\text{outer}}(x_n = 0)) \) by a given ratio \(\nu = n_{n\text{inner}}(x_n = 0)/n_{n\text{outer}}(x_n = 0) \) (the "center" of the transition \(x_n = 0 \) is defined by setting the magnetic potential \(a_0(0) = a_m(0) = 0 \)). Inner ions and electrons have opposite drift speeds, such that there is a net current: the diamagnetic magnetopause current that shields the magnetosphere from the solar wind environment and that causes the rotation of the magnetic field.

Such a Vlasov model has been used to simulate the observed magnetopause crossings. The simulated profiles are displayed in the right panels of Figure 2. The principle is simple: Given the observed boundary conditions on each side of the magnetopause (densities, temperatures, magnetic field) a satisfactory numerical simulation is obtained when suitable parameters for \(L, L_d \) (or equivalently \(V_d \)) and \(\nu \) are found; \(\nu \) can be found from the pressure balance between the center of the transition and the total pressure outside the magnetopause, and the characteristic lengths should match the length scales of the observed profiles.

Since only the electron number densities and the magnetic field are measured \((N_{-\text{msph}} = 5 \text{ cm}^{-3}, N_{-\text{mah}} = 21 \text{ cm}^{-3}, B_{\text{msph}} = 63 \text{ nT}, B_{\text{mah}} = 51 \text{ nT}) \), assumptions have to be made concerning the plasma temperatures. We choose typical values [Phan et al., 1994]: a magnetosheath proton temperature \(T_{\text{msph}}^+ = 300 \text{ eV} \), and temperature ratios \(T_{\text{msph}}^-/T_{\text{msph}}^+ = 5 \) and \(T_{\text{msph}}^+/T_{\text{msph}}^- = 10 \). The electron temperature in the magnetosheath then is \(T_{\text{msph}}^- = 60 \text{ eV} \). The magnetospheric temperatures then follow from pressure balance: \(T_{\text{msh}}^- = 76.7 \text{ eV} \) and \(T_{\text{mah}}^+ = 767 \text{ eV} \). The ion gyroradii are \(

The ion transition lengths used in the simulation are typical (chosen in order to match the observed transition thickness): a few times the ion gyroradius \((L_{\text{msph}}^- = 4\rho_{n\text{msph}}, L_{\text{mah}}^+ = 4\rho_{n\text{mah}}^-) \); the electron length is a few times smaller \((L_{\text{msph}}^-/L_{\text{mah}}^+ = L_{\text{mah}}^-/L_{\text{mah}}^+ = 4) \). The length scales of the inner populations are also of the order of the ion gyroradius \((L_{m\text{d,msph}}^- = L_{m\text{d,mah}}^+ = 5.6\rho_{n\text{msph}}, L_{m\text{d,mah}}^- = 2\rho_{n\text{mah}}^+) \), corresponding to drift speeds \(V_d^+ = 65 \text{ km/s}, V_d^- = -5.5 \text{ km/s} \) for the inner magnetospheric particles, and \(V_d^+ = 120 \text{ km/s}, V_d^- = -24 \text{ km/s} \) for the inner magnetosheath particles. The densities of the four inner populations are fixed by the choice \(\nu = 1 \), corresponding to the observed magnetic field depression inside the transition.

The right panels of Figure 2 show the result of the simulation to be quite satisfactory, given the simple model, the assumptions that had to be made about the temperatures, and the lack of information about the inner populations. The simulated electron density profile (Figure 2h) agrees well with the observed density overshoot (Figure 2d), except that the latter seems to be wider. This is a consequence of the fact that the densities in Figure 2d are averages over the normal spacecraft separation distance of about 4 \(\rho_{n\text{mah}}^- \); such averaging necessarily leads to a broadening of the density peak. The simulation is characterized by a magnetic field asymmetry factor \(\kappa_B = 0.19 \), a magnetic field rotation over \(\theta \approx 130^\circ \), and a density overshoot \(\delta = 0.33 \); all these values are close to the observed ones.

3.3. Discussion

From Figure 2 it can be concluded that the simple kinetic model can explain the overshoot of the density observed near the subsolar magnetopause. To explain this result, we describe some aspects of the theoretical model in more detail.

In the KR model the magnetic field rotation angle \(\theta \) was shown to be an increasing function of the parameter \(\nu \), that is, of the relative number density of the inner populations at \(x_n = 0 \): A stronger \(B_1 \) variation implies a larger diamagnetic current, and more inner particles are present. The same is true for the more general model used here. Note that in these models the magnetic field rotation angle \(\theta \) does not (or not strongly) depend on the drift speed: Larger drift speed corresponds to higher diamagnetic current density, but at the same time the diamagnetic layer is thinner, so that the total current remains the same.

For high magnetic shear there are more inner particles than for low magnetic shear: This explains the overshoot of the number density observed in those cases. In general, an overshoot is expected to be present when the number of inner particles is of the same order as or larger than the number of outer particles.

The exact nature of the density profile depends not only on the number of inner particles but also on the location of the bulk of their distribution inside the transition. This is sketched in Figure 3. In Figure 3a, the layer with inner populations is situated at the center of the transition. Figures 3b
Figure 3. Sketch of the electron density enhancement across the high magnetic shear magnetopause (a) when the drift current layer containing the inner populations is located at the center of the transition, (b) when it is displaced toward the magnetospheric side, and (c) when it is displaced toward the magnetosheath side. The morphology of the total electron density profile is different in each case. The drift current layer displacement should remain small; otherwise, the drift current and the transition between the magnetospheric and magnetosheath plasmas would be unrelated.

and 3c illustrate situations where the layer with inner populations is displaced toward the magnetospheric side and magnetosheath side, respectively. The density profile can have a different morphology, as in Figure 3b which shows a number density depression between the magnetosheath and a plasma bulge located at the magnetospheric side. It is expected, however, that the inner population layer is not displaced too much from the center of the transition. If not, the drift current layer would become completely unrelated to the transition between the magnetospheric and the magnetosheath plasmas. In conclusion, a density overshoot can be expected when the magnetic shear is high.

Figure 4 displays the density enhancement δ versus the magnetic field rotation θ for a fixed value of the magnetic field asymmetry factor $\kappa_B = 0.19$ (the average value for the threefold magnetopause crossing from the superposed epoch analysis). The shaded area in this figure is the locus of magnetopause configurations used in the simulation, allowing for (1) the number density of the inner populations being varied and (2) the position of the diamagnetic layer being possibly shifted away from the center of the transition (such a shift can be obtained by changing the orientation of the drift current in the model). The overall trend is, of course, one of increasing density overshoot with increasing rotation angle. The effect of shifting the diamagnetic layer inside the transition is, however, not unimportant. The circle corresponds to the simulation of Figure 2, the squares with the error bars correspond to the three observed crossings of day 1981/242.

4. Conclusions

For a limited number of cases high time resolution electron density profiles obtained from the ISEE 1-2 propagation density experiment have demonstrated, for the first time, an enhancement of the electron density at the Earth’s magnetopause. Because of the limited number of crossings for which high resolution data were available, it was not possible to verify observationally whether such a density enhancement occurs frequently. From the similarity of the in-
individual transitions in a triple crossing, we infer that the internal structure of the magnetopause does not change dramatically as a consequence of the minor solar wind dynamic pressure fluctuations that are responsible for the small displacements of the magnetopause. The shape of the observed density enhancement is close to that obtained from Vlasov equilibrium models of the tangential discontinuity magnetopause [Kuznetsova and Roth, 1995]. We have illustrated this by demonstrating the close correspondence between simulated and observed magnetic field and density profiles.

It should be stressed that very little is actually known about the inner populations. High-resolution plasma observations are of prime importance in resolving the question of the origin and the properties of these inner populations. The one-dimensional TD model used in this study, for instance, does not allow one to trace back the origin of the inner populations [Whipple et al., 1984]. Only models that describe the physical processes responsible for trapping particles inside the current layer can resolve questions related to the temperature of the inner populations, their transition lengths, and the position of the drift current layer inside the transition. In particular, there may be heating at the magnetopause [Song et al., 1993]. The magnetic pressure decrease in the transition in that case may be due to a temperature increase of the inner populations, rather than a density enhancement.

An analysis of the most important parameters in the model shows that an electron density overshoot is expected to be a feature of high magnetic shear configurations: The density peak reflects the presence of a substantial amount of inner particles, which in turn is related to the current responsible for the rotation of the magnetic field. However, such density enhancements do not always occur, and if they do, their magnitude may differ from case to case because of several reasons. As suggested by Figures 3 and 4 the presence of an enhancement depends not only on the magnitude of the magnetic field rotation, but on the position of the drift current layer inside the transition as well. The enhancement will also be smaller or it can even be absent if there is a temperature increase inside the magnetopause. It is therefore not surprising that a density enhancement is not visible in the superposed epoch analysis of Phan et al. [1994] (see the high magnetic shear case in their Figure 9) which covers crossings with $|\theta| > 60^\circ$. Also, the low time resolution of the profiles in the superposition may easily obscure details observed within the transition. In the same paper, Phan et al. show examples of crossings with moderate shear with (their Figures 5 and 6, $|\theta| \approx 60^\circ$) and without (their Figure 7, $|\theta| \approx 90^\circ$) a density enhancement. The crossings discussed in the present paper are peculiar because of their very large rotation angle ($|\theta| > 140^\circ$).

The analysis in the present paper ignores the effects of the plasma flow in the magnetosheath. This flow may significantly affect the structure of the transition [De Keyser and Roth, 1997]. The analysis therefore is valid only for transitions near the stagnation point.

Acknowledgments. The authors are grateful to C.T. Russell for providing ISEE 1 and 2 magnetic field observations. Part of the work by M.R. was performed during a stay at the Observatoire de Paris-Meudon, France. M.R. thanks the members of the "Département de Recherche Spatiale" for their warm hospitality and stimulating discussions. J.D.K. and M.R. are supported by the ESA (PRODEX) "Ulysses Interdisciplinary Study of Directional Discontinuities", and acknowledge the support of the Belgian Federal Services for Scientific, Technical and Cultural Affairs.

The Editor thanks Christopher T. Russell and another referee for their assistance in evaluating this paper.

References

Zhang, X. X., P. Song, S. S. Stahara, J. R. Spreiter, C. T. Russell, and G. Le, Large scale structure in the magnetosheath: Exoge-

J. De Keyser and M. Roth, Belgian Institute for Space Aeronomy, Ringlaan 3, B-1180 Brussels, Belgium. (e-mail: Johan.DeKeyser@oma.be, Michel.Roth@oma.be)

C. C. Harvey and D. Hubert, Département de Recherche Spatiale, Observatoire de Paris–Meudon, 5 place Jules Janssen, F-92195 Meudon Cedex, France. (e-mail: chris.harvey@obspm.fr, daniel.hubert@obspm.fr)

(Received April 17, 1997; revised October 31, 1997; accepted November 3, 1997.)