ACETONITRILE AND SULFURIC ACID CONCENTRATIONS DERIVED FROM ION COMPOSITION MEASUREMENTS DURING THE MAP/GLOBUS 1983 CAMPAIGN*

J. INGELS, D. NEVEJANS, P. FREDERICK and E. ARIJS
Belgian Institute for Space Aeronomy, Ringlaan 3, B-1180 Brussels, Belgium

(Received in final form 9 September 1986)

Abstract—Acetonitrile volume mixing ratios are derived from positive ion spectra obtained with a balloon-borne quadrupole mass spectrometer in an altitude region from 21 to 32 km. Comparison of the results with data obtained in previous flights suggests a larger deviation from reference profiles, probably due to temporal transport phenomena.

From negative ion spectra obtained during the same balloon flight, the concentration of sulfuric acid vapour between 22 and 32 km is also deduced. These results seem to be in reasonable agreement with earlier data which were mostly obtained shortly after a period of enhanced volcanic activity.

I. INTRODUCTION

Since the first identification of stratospheric ions, realized with balloon-borne instruments in 1977 (Arijs et al., 1978; Arnold et al., 1978), considerable advance has been made in the field of balloon-borne ion mass spectrometry.

Whereas the first experiments were carried out at a single altitude, progress in ballooning technology has allowed an extension of the measurements in an altitude region from about 20 to 45 km. A simultaneous development of more sensitive, high resolution instruments also resulted in a more definite identification of positive and negative stratospheric ions and a determination of more detailed height profiles of the ion composition (for overviews of recent results, see Arnold, 1980, 1982; Ferguson and Arnold, 1981; Arijs, 1983; Arijs et al., 1984).

The main findings are summarized hereafter. For positive ions, two major families were detected: the proton hydrates (PH) i.e. ions of the form $H^+(H_2O)_n$ and the so-called non proton hydrates (NPH) of the form $H^+(CH_3CN)_m(H_2O)_n$. A study of ion abundances based on steady-state considerations and explained hereafter, allowed the derivation of a mixing ratio profile of CH$_3$CN between 20 and 45 km. For negative ions, two major groups were found also; one consisting of clusters with NO$_3$ as core ion and HNO$_3$ as a ligand and another with HSO$_4^-$ as core ion and with HNO$_3$ and H$_2$SO$_4$ as ligands. A steady-state method analogous to the one for positive ions resulted in the derivation of H$_2$SO$_4$ concentration profiles. This is an important result, as it provided the first estimations of the concentration of H$_2$SO$_4$, a trace gas important in aerosol formation processes.

Furthermore, it has been shown previously (Arnold et al., 1980; Arijs et al., 1981) that negative ion composition measurements may lead to an independent determination of HNO$_3$ mixing ratios in the atmosphere.

Originally, this was one of the main motivations to include stratospheric ion composition measurements in the MAP/GLOBUS 1983 campaign. Although this objective proved difficult to meet due to problems with cluster break-up (Arnold et al., 1981a; Arijs et al., 1985), the ion mass spectrometer gondolas remained integrated in the MAP/GLOBUS 1983 campaign, because they can provide important information on other trace gases such as CH$_3$CN, a long-glived species that may be useful as a tracer for transport problems, and H$_2$SO$_4$, the chemistry of which is closely related to aerosols, studied by other methods during this campaign (mainly by LIDAR).

2. EXPERIMENTAL METHODS AND MEASUREMENTS

The stratospheric ion spectra presented here were recorded over southern France on 18 September 1983 during our flight S-83 with gondola G7 of the MAP/GLOBUS 1983 campaign. A 100,000 m3 valve-controlled balloon, type 100 SF Zodiac, was launched at 13:11 U.T. from the CNES base near Aire-sur-l'Adour (approx. 44°N, 0°W), and a ceiling altitude...
of 32.2 km (7 mbar) was reached. Between 18:18 and 21:31 U.T., balloon and gondola descended at a rate of about 1.1 m s⁻¹ from float altitude down to 20.0 km (52 mbar). The payload consisted of our quadrupole ion mass spectrometer QMS2 and an instrument to study aerosol properties by Earth limb photography (Ackerman et al., 1981). Total weight of the scientific instruments was 311 kg.

Our QMS2 instrument basically consists of a quadrupole mass filter and a Spiraltron detector (type Galileo Electro Optics secondary electron multiplier 4219) in a high speed liquid helium cryopump, and the appropriate electronic modules. Microprocessor-controlled operation guarantees a flexible system, allowing both positive and negative ion sampling with the same instrument. A detailed description of these parts is given elsewhere (Ingels et al., 1978; Arijs et al., 1980; Nevejans et al., 1982, 1985).

Stratospheric ions and neutral gases are sampled through a small hole of 0.25 mm diameter in a stainless steel flange of 0.1 mm thickness into a liquid helium cryopump. Behind the inlet hole, neutral gases are pumped and ions are focused into the quadrupole filter by an electrostatic lens, where the polarity of applied voltages is simply inverted between positive and negative ion modes. The high pumping speed of the cryopump (1,150 1 s⁻¹) assures a pressure below 10⁻⁴ mbar throughout the altitude range covered. The sampling flange is insulated from and biased with respect to the gondola structure with a draw-in potential adjustable between -5 and +5 V. This draw-in potential is set for a maximum signal either by remote or by automatic control. After mass filtering, the ions reach the high gain spiraltron detector, signals of which are treated by pulse counting techniques. The cone of the spiraltron is kept at -3 and +1.5 kV for positive and negative ions respectively, resulting in an adequate detection efficiency. Mass range and sensitivity of the mass filter both depend upon resolution, determined by the ratios of DC and RF voltages applied to the quadrupole rods. In our instrument, resolution can be programmed by the on-board microprocessor. To record the present spectra, a moderate resolution mode (M/ΔM ≈ 17) was sufficient to resolve properly the major mass peaks and to determine the fractional abundances of the major ions in a mass range from 0 to 330 amu.

The spectra of stratospheric positive and negative ions discussed in this paper were recorded during the night-time, in the descent phase of the flight, to minimize contamination through gases desorbing from balloon and gondola (Arijs et al., 1983a). For the same reasons, the distance between balloon and gondola was kept at 170 m. Ambient pressure was measured in flight with a Baratron precision absolute capacitance manometer and temperature was recorded through use of heat thermistors mounted on an aluminium boom of about 1 m.

3. RESULTS AND DISCUSSION

3.1. Positive ions and acetonitrile mixing ratios

Although typical ion spectra obtained with our instruments were shown before (Arijs et al., 1982b, 1983a,b), it is worthwhile to give a typical positive ion spectrum as recorded in this flight in Fig. 1. In this figure, the presence of PH with mass numbers 55 and 73 is obvious, as well as that of NPH mass peaks. A list of observed mass numbers and their identification is given in Table 1.

All positive ion spectra of flight S-83 were obtained with the same moderate resolution (M/ΔM ≈ 17). Due to earlier high resolution data (Arijs et al., 1980) such a resolution still allowed identification of the major ions. It also permitted a determination of the ion abundances without having to correct for possible mass discrimination effects on the quadrupole transmittance.

The ion abundances derived from Fig. 1 are somewhat different from those of earlier spectra obtained at the same altitude. The most abundant NPH here is mass 78 in contrast to earlier data, where it was mass 96. This fact suggests a greater influence of cluster break-up effects in the present flight data, although sampling conditions (inlet hole diameter, draw-in potential, focus lens elements potentials) were very similar to those used in earlier flights.

It is, however, unlikely that these cluster break-up effects would result in conversion of NPH to PH, because the CHCN ligand is more strongly bound to the core ion than the H₂O ligand, due to its higher proton affinity. Therefore, the ion abundances can still be used to determine CH₃CN mixing ratios, μ(CH₃CN), as explained before (Arijs et al., 1983a).

<table>
<thead>
<tr>
<th>Mass number (amu)</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>H⁺(H₂O)₂</td>
</tr>
<tr>
<td>60</td>
<td>H⁺(CH₃CN) H₂O</td>
</tr>
<tr>
<td>73</td>
<td>H⁺(H₂O)₄</td>
</tr>
<tr>
<td>78</td>
<td>H⁺(CH₃CN)(H₂O)₂</td>
</tr>
<tr>
<td>83</td>
<td>H⁺(CH₃CN)₂</td>
</tr>
<tr>
<td>96</td>
<td>H⁺(CH₃CN)(H₂O)₃</td>
</tr>
<tr>
<td>101</td>
<td>H⁺(CH₃CN)₂ H₂O</td>
</tr>
<tr>
<td>119</td>
<td>H⁺(CH₃CN)₂(H₂O)₂</td>
</tr>
<tr>
<td>142</td>
<td>H⁺(CH₃CN)₃ H₂O</td>
</tr>
</tbody>
</table>
Acetonitrile and sulfuric acid concentrations

Fig. 1. Typical positive ion spectrum obtained at an altitude of 31.2 km during flight S-83 or gondola G7 of the MAP/GLOBUS 1983 campaign.

The integration time for the accumulated counts is 0.75 s.

with a method based on the steady-state equation:

\[k_1 \mu(\text{CH}_3\text{CN}) [M] [\text{PH}] = \alpha [n^-] [\text{NPH}]. \]

(1)

In this equation the symbols are:

- \(k_1 \) = reaction rate constant for the conversion of \(\text{PH} \) to \(\text{NPH} \) in \(\text{cm}^3 \text{s}^{-1} \),
- \([M]\) = total neutral atmospheric density in \(\text{cm}^{-3} \),
- \([\text{PH}]\) = total concentration of all \(\text{PH} \) ions in \(\text{cm}^{-3} \),
- \(\alpha \) = ion–ion recombination coefficient in \(\text{cm}^3 \text{s}^{-1} \),
- \([n^-]\) = total negative ion concentration in \(\text{cm}^{-3} \),
- \([\text{NPH}]\) = total concentration of \(\text{NPH} \) ions in \(\text{cm}^{-3} \).

For calculating the mixing ratios of \(\text{CH}_3\text{CN} \), \(\mu(\text{CH}_3\text{CN}) \), a value for \(k_1 \) of \(3 \times 10^{-9} \text{ cm}^3 \text{s}^{-1} \) as reported by Smith et al. (1981) was used. The total ion concentration \([n^-]\) was deduced from a parametrization of Heaps (1978) and for \(\alpha \) the expression (Arijs et al., 1983a)

\[\alpha = 6 \times 10^{-8} \left(\frac{300}{T} \right)^{1/2} + 1.25 \times 10^{-25} [M] \left(\frac{300}{T} \right)^4 \]

(2)

was used, were \(T \) is the temperature in K. The mixing ratios of \(\text{CH}_3\text{CN} \) can be calculated with formula (1) if we assume that the height of a mass peak is proportional to the corresponding ion abundance. The results are represented by full circles labeled BISA in Fig. 2 and the corresponding mixing ratios of \(\text{CH}_3\text{CN} \) are given in Table 2. For the present data, \([M]\) was derived from a measurement of ambient pressure and temperature, performed on the gondola.

The shaded area in Fig. 2 results from drawing an envelope \(E \) for all extant measurements of \(\mu(\text{CH}_3\text{CN}) \) apart from three extreme results and the data of this MAP/GLOBUS 1983 campaign (Arnold et al., 1978, 1981c; Arijs et al., 1980, 1982b, 1983b; Henschen and Arnold, 1981; Arnold and Henschen, 1982; Ingels et al., 1986). A total of 106 mixing ratio values are contained within this envelope \(E \). The dotted line \(F \) in Fig. 2 is obtained by fitting a second degree curve through the 106 data points, so that

\[\log \mu(\text{CH}_3\text{CN}) = A + B \cdot z + C \cdot z^2 \]

(3)

where \(z \) is the altitude in km. It is found that \(A = -28.01, B = 0.1678 \text{ km}^{-1} \), and \(C = -4.127 \times 10^{-3} \text{ km}^{-2} \). The standard deviation of the logarithm of the data points from curve \(F \) is given by \(S = 0.352 \), which translates into a factor of 1.42 for the mixing ratio itself. The full line \(M \) is the result of a model calculation of \(\text{CH}_3\text{CN} \) (Arijs and Brasseur, 1986), adopting a global surface emission strength of \(4.7 \times 10^{10} \text{ g} \) and assuming that acetonitrile is destroyed mainly by reactions with \(\text{OH} \) and atomic oxygen. A detailed discussion of this 1-D model is given by Arijs and Brasseur (1986).

As can be seen from Fig. 2, the discrepancies between the \(\text{CH}_3\text{CN} \) mixing ratios obtained during our MAP/GLOBUS flight and the curves \(M \) and \(F \) seem to be larger than those observed in previous flights. Most of the points actually fall out of the
In order to compare the deviations with those measured during the MAP/GLOBUS 1983 campaign derived for other trace gases such as O₃, HNO₃, H₂O, N₂O, CH₄ and CF₂Cl₂, we have presented them in the same way, i.e. the quotient of the mixing ratios as derived from the ion mass spectra and those given by a reference profile are shown as a function of altitude in Fig. 3. However, in making a comparison, some important points need to be kept in mind.

(1) The choice of a reference profile for CH₃CN is not straightforward. Curve F (a fit to previous experimental data) is only representative for a limited number of data, all obtained by the same technique and in a limited altitude range (20–45 km), where the data above 40 km only result from one balloon flight. In addition, the choice of curve M (a model calculation) is somewhat arbitrary, since it was shown (Arijs and Brasseur, 1986; Ingels et al., 1986) that different model profiles agreeing reasonably with experimental results can be obtained, depending upon the use of the CH₃CN emission strength, reaction rates and eddy diffusion coefficients used in the model calculations. We have adopted here a model result giving the best agreement with experimental CH₃CN mixing ratios between 20 and 45 km and resulting in ion distributions consistent with experimentally obtained ones (Ingels et al., 1986).

In view of the difficulty in choosing a so-called reference profile, the deviations from both curves M and F are displayed in Fig. 3. Also shown in Fig. 3 are the limits for the deviations given by one and two standard deviations from the fitting F, labeled S and 2S, respectively.

(2) The experimental uncertainties on CH₃CN mixing ratios derived from flight S-83 are estimated to be of the order of 20–30% above 25 km and to be somewhat larger below this altitude due to less complete counting statistics in the low altitude spectra. This uncertainty, however, does not take into account possible errors on the values of k, α and $[n^-]$ used here.

Nevertheless, the deviations from the “standard” profiles around 30 km as shown in Fig. 3 are larger than those observed for earlier flights and they seem to suggest the presence of a larger disturbance in the stratosphere. Below 25 km, the S-83 data show a considerable amount of scatter and it is difficult to be conclusive about the deviations, especially in view of the dilemma in choosing the exact reference profile (M or F). Disturbances giving rise to temporal variances (or deviations from standard profiles) can be ascribed to dynamics or transport phenomena (Ehhalt et al., 1983). The present set of data on its own, however, does not allow one to speculate on the nature

Table 2. Acetonitrile Mixing Ratios as Inferred from Positive Ion Spectra in the S-83 Flight

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>Mixing ratio ($\times 10^{19}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>31.2</td>
<td>5.5</td>
</tr>
<tr>
<td>31.0</td>
<td>5.0</td>
</tr>
<tr>
<td>30.0</td>
<td>5.4</td>
</tr>
<tr>
<td>29.8</td>
<td>6.6</td>
</tr>
<tr>
<td>25.0</td>
<td>5.2</td>
</tr>
<tr>
<td>24.7</td>
<td>9.5</td>
</tr>
<tr>
<td>23.7</td>
<td>3.4</td>
</tr>
<tr>
<td>23.5</td>
<td>6.8</td>
</tr>
<tr>
<td>22.6</td>
<td>3.3</td>
</tr>
<tr>
<td>22.4</td>
<td>3.8</td>
</tr>
<tr>
<td>22.1</td>
<td>5.0</td>
</tr>
<tr>
<td>20.8</td>
<td>4.7</td>
</tr>
</tbody>
</table>
Acetonitrile and sulfuric acid concentrations

3.2. Negative ions and sulfuric acid concentrations

During a considerable part of the descent from float altitude down to 22 km, measurements were performed in the negative ion mode. Typical spectra as well as a more detailed discussion of the negative ion composition data of flight S-83 have already been given elsewhere (Arijs et al., 1985). The observed major ions were NO$_3$ (HNO$_3$)$_n$ and HSO$_4$ (H$_2$SO$_4$)$_n$(HNO$_3$)$_m$ clusters, indicated hereafter by n_{NO_3} and n_{HSO_4}, respectively. Due to the fact that conversion of n_{NO_3} to n_{HSO_4} ions proceeds through a reaction with sulfuric acid vapor

$$n_{\text{NO}_3} + \text{H}_2\text{SO}_4 \rightarrow n_{\text{HSO}_4} + \text{HNO}_3$$ \hspace{1cm} (4)

with a reaction rate coefficient k_2, measured in the laboratory (Viggiano et al., 1980, 1982), the spectra allow a derivation of the H$_2$SO$_4$ number density through the steady-state equation

$$k_2[\text{H}_2\text{SO}_4 + \text{HSO}_4][n_{\text{HSO}_4}] = \alpha[n_{\text{HSO}_4}][n^+]$$ \hspace{1cm} (5)

where square brackets stand for number densities and $[n^+]$ is the total positive ion density. The term HSO$_4$ in equation (5) represents possible other sulfur-bearing gases also leading to conversion of n_{NO_3} to n_{HSO_4} clusters. It has been suggested that these gases mainly consist of HSO$_3$ (Arnold et al., 1982; Qiu and Arnold, 1984), which is an intermediate product in the formation of H$_2$SO$_4$, produced by the reaction

$$\text{SO}_2 + \text{OH} + \text{M} \rightarrow \text{HSO}_3 + \text{M}.$$ \hspace{1cm} (6)

Recently, however, it was suggested by Stockwell and Calvert (1983) that further conversion of HSO$_3$ proceeds through

$$\text{HSO}_3 + \text{O}_2 \rightarrow \text{HO}_2 + \text{SO}_3.$$ \hspace{1cm} (7)

If, however, this reaction is the major loss process for HSO$_3$, then the presence of HSO$_3$ in measurable quantities in the stratosphere would become very doubtful, as was indicated before (Arijs et al., 1985).

Recent laboratory measurements by Margitan (1984) showed that the rate constant for reaction (7) was $(4 \pm 2) \times 10^{-13}$ cm3 s$^{-1}$, allowing one to conclude that the presence of HSO$_3$ in the stratosphere is very unlikely. Therefore we believe that the H$_2$SO$_4$ + HSO$_4$ number density derived from equation (4) mainly consists of [H$_2$SO$_4$].

The H$_2$SO$_4$ number densities as derived from flight S-83 are shown in Fig. 4. The shaded area in this figure corresponds to the envelope of all previous data (Arijs et al., 1982a, 1983c,d, 1985; Arnold and Fabian, 1980; Arnold et al., 1981b; Arnold and Bührke, 1983; Arnold and Qiu, 1984; Qiu and Arnold, 1984); the
dotted line represents a vapor pressure calculation by a procedure explained elsewhere (Arijs et al., 1983c). Although calculations of the vapor pressure were made assuming a flat surface of a H$_2$SO$_4$–H$_2$O mixture, it can easily be shown that the results will differ only by a few percent using spherical surfaces with a radius of the order of 0.05–0.1 μm, i.e. the typical dimensions of stratospheric aerosols.

Taking into account the error bars, the data fall reasonably well within the envelope of the previous results, and no marked deviations due to transport effects, as suggested by the data of CH$_3$CN, are noticed around 30 km. It is tempting to conclude that the larger supersaturation of the inferred H$_2$SO$_4$ concentration below about 25 km altitude compared with the mean value of the previous results also reflects interaction of dynamical processes. This conclusion, however, is rather speculative because of the large uncertainties on the H$_2$SO$_4$ concentrations due to the low count rate observed in the negative ion spectra obtained below 25 km. It should also be kept in mind that most of the earlier data about H$_2$SO$_4$ were obtained during the period from June until October 1982 after the eruption of the volcano El Chichon (4 April 1982). This eruption resulted in a disturbed stratospheric sulfur chemistry due to injections of large supplementary quantities of SO$_2$ and other sulfur-bearing gases. It is therefore very difficult to derive an average H$_2$SO$_4$ profile from the previous data and an analysis similar to the one for CH$_3$CN would probably not be representative.

Acknowledgements—We thank the technical staff of the Belgian Institute for Space Aeronomy and the balloon launching base of the Centre National d'Etudes Spatiales in Aire-sur-l'Adour (France) for their cooperation, which made these experiments possible. We would also express our gratitude to Prof. Dr D. Offermann (University of Wuppertal, F.R.G.) for organizing and coordinating the MAP/GLOBUS 1983 campaign, during which we obtained the present results. This work was partly financed by the N.F.W.O. (Belgian National Science Foundation) under contract No. 2.0095.83.

REFERENCES

Acetonitrile and sulfuric acid concentrations

