Ozone and hydrogen reactions

by M. NICOLET,
Institut d'Aéronomie Spatiale, 3, avenue Circulaire, 1180-Bruxelles (Belgium).

ABSTRACT. — Solar radiation dissociates water vapour into hydrogen atoms and hydroxyl radicals in the thermosphere and upper mesosphere. In the stratosphere and lower mesosphere, dissociation of H_2O is brought about mainly by a collision process with excited oxygen atoms produced by photodissociation of ozone. Such a collision process prevents the existence of normal mixing ratios for methane and molecular hydrogen at the stratopause. The rate of oxidizing processes falls off more rapidly with increase of altitude than does that of the vertical transport by eddy diffusion.

Hydrogen molecules in the mesosphere are produced as a result of subsequent chemical reactions between hydroperoxyl radicals and hydrogen atoms. Hydrogen acts as a catalyst for the destruction of oxygen atoms and causes the ozone concentration to diminish pronouncedly in the mesosphere from a factor of 1.5 at the stratopause to about a

factor of 100 at the mesopause. The vertical distribution of water vapour is not affected in the stratosphere and mesosphere by the dissociation process since its re-formation is rapid. In the thermosphere, water vapour diffuses into the photodissociative region by eddy diffusion which carries it up at a sufficient rate to replace the hydrogen being lost.

Various reactions involving nitric oxide and nitrogen peroxide must be introduced in the reactions of the stratosphere. Such molecules play an aeronomic role on the ratio of the hydroxyl and hydroperoxyl radical concentrations. In spite of a continuous production of hydrogen peroxide molecules, their concentration should be small. It is thought that reactions with nitrogen oxides lead to nitric and nitrous acid molecules and are the mechanism responsible for the removal of nitric oxide which is produced in the thermosphere.

I. INTRODUCTION.

Dissociation of H₂O, CH₄ and H₂

The water vapour which is quite abundant near ground level with a fractional volume concentration reaching 10⁻², decreases in mixing ratio with altitude. The water vapour content is very small in the stratosphere; 3 x 10⁻⁶ is not an unreasonable value to adopt for the order of magnitude of the fractional volume concentration of water vapour [Williamson and Houghton, 1965; Mastenbrook, 1968; Sissenwine et al, 1968] in the stratosphere. Methane and molecular hydrogen, which have been found as permanent constituents of the troposphere have continuous sources at ground level. Their total amounts by volume are, respectively, 1.5 x 10⁻⁶ and 0.5 x 10⁻⁶ of the major gases N₂ and O₂. Unlike water vapor, however, their fractional concentrations are not affected through the troposphere. Consequently, above the tropopause, the combined H-atom content in CH₄ is identical with the adopted content in H₂O. Thus, the total amount of free hydrogen cannot be far from 10⁻⁵.

Water vapour can be dissociated by sunlight (Fig. 1) and its photodissociation coefficient at 100 km is only

\[J_{H₂O}(λ < 2000 \text{ Å}) = 6.5 \times 10^{-6} \text{ sec}^{-1}, \]

and at the mesopause level, 85 km, \[J_{H₂O}(λ < 2000 \text{ Å}) = 4.5 \times 10^{-6} \text{ sec}^{-1}. \] The radiation (see Fig. 2) which is not attenuated reaches the lower mesosphere, and at 65 km the photodissociation coefficient is

\[J_{H₂O}(λ < 2000 \text{ Å}) = 1.5 \times 10^{-7} \text{ sec}^{-1} \]

But, an important part of the photodissociation of H₂O in the upper mesosphere and in the lower thermosphere is due to Lyman-α which can reach the 70 km level as indicated in Figure 2. The process

\[H₂O + hv(λ = 1216 \text{ Å}) \rightarrow H(\Sigma^2) + OH(\Sigma^2) \]

is possible, since an experimental analysis [Carrington, 1964] shows that the fluorescence process of the OH bands is between 1 and 10% of the total process. Thus, a fluorescence of OH bands at 3064 Å occurs in the upper mesosphere and lower thermosphere.
Methane can be also dissociated by sunlight. However, since the absorption cross section is very small at $\lambda > 1500 \, \text{Å}$, the aeronomic photodissociation of CH$_4$ arises from Lyman-α with photodissociation coefficient at zero optical depth

$$J_{\text{CH}_4}(\lambda = 1216 \, \text{Å}) = 5 \times 10^{-6} \, \text{sec}^{-1}. \quad (5)$$

The photodissociation coefficient is a decreasing function of the optical depth in the mesosphere and is negligible in the lower mesosphere (Fig. 3).

Among the other hydrogen oxides which may be present in the upper atmosphere, HO$_2$ and H$_2$O$_2$, can be subject to photodissociation. The photodissociation of H$_2$O$_2$ is known from laboratory measurements [UREY et al, 1929; HOLT et al, 1948]. The photodissociation coefficient for zero optical depth is (see Fig. 4)

$$J_{\text{H}_2\text{O}_2} = 1.2 \times 10^{-4} \, \text{sec}^{-1}. \quad (6)$$

The photolysis of H$_2$O$_2$ cannot occur in the far ultraviolet and below 2100 Å the photodissociation coefficient is less than $10^{-5} \, \text{sec}^{-1}$. Therefore the fluorescence of OH bands cannot be an important aeronomic process.

Photodissociation is not the only disruptive process of H$_2$O, CH$_4$ and H$_2$O$_2$. Among the primary processes likely to be important, the reaction with atomic oxygen must be considered since O(3P) atoms exist in a sunlit atmosphere where ozone is present. However, all reactions are endothermic; the oxidation of water vapor is impossible and that of methane and molecular hydrogen requires an activation energy between 8 and 10 kcal/mole.

Considering that atomic oxygen can be in the excited 1D state, other reactions are possible in the stratosphere and mesosphere [CADLE, 1964]. Recent experimental evidence [DEMORE and RAPER, 1967; DEMORE, 1967a; ENGLEMAN, 1965] indicates that the rate coefficients of oxidizing reactions with O(1D) atoms are of the order of $10^{-10} \, \text{cm}^3 \, \text{sec}^{-1}$. The following reactions occur in the stratosphere

$$\text{O}^1D + \text{H}_2 \rightarrow \text{H} + \text{OH}^*(v \leq 4) + 43.5 \, \text{kcal} \quad (7)$$
$$\text{O}^1D + \text{CH}_4 \rightarrow \text{CH}_3 + \text{OH}^*(v \leq 4) + 43.5 \, \text{kcal} \quad (8)$$
$$\text{O}^1D + \text{H}_2\text{O} \rightarrow \text{OH} + \text{OH}^*(v \leq 2) + 28.8 \, \text{kcal}. \quad (9)$$

Thus, the presence of O(1D) atoms leads to the possibility of the production of hydrogen atoms by CH$_4$, H$_2$ and H$_2$O. With the fractional volume concentrations which have been adopted, the total production $P(H)$ of hydrogen atoms is

$$P(H) = 13 \times 10^{-16} n(M) n[O(^1D)] \, \text{cm}^{-3} \, \text{sec}^{-1} \quad (10)$$

if $n(M)$ is the total concentration and if the average rate coefficient of $10^{-10} \, \text{cm}^3 \, \text{sec}^{-1}$ is adopted.

II. Production of excited oxygen atoms

When an analysis of the ozone photodissociation is made, it is necessary to distinguish between the various products in order to know the production of excited atoms or molecules. In the spectral range of the Huggins bands, an unimportant process is

$$\text{O}_3 + h\nu(\lambda \leq 4125 \, \text{Å}) \rightarrow \text{O}_2(^3\Sigma_g^+) + \text{O}^1D \quad (11 \, a)$$

but at shorter wavelength an important process must be

$$\text{O}_3 + h\nu(\lambda \leq 3110 \, \text{Å}) \rightarrow \text{O}_2(^1\Delta_g) + \text{O}^1D. \quad (11 \, b)$$
An important experimental result [DEMORE and RAPER, 1966] is that at \(\lambda < 3000 \) Å the photodissociation process leads to a complete production of \(\text{O}^1(D) \) atoms and that at \(\lambda = 3130 \) Å the \(\text{O}^1(D) \) production is only \(0.4 \pm 0.15 \) of the total number of atoms. The total number of photodissociation processes of \(\text{O}_3 \) leading to \(\text{O}^1(D) \) atoms is about \(10^8 \) cm\(^{-3}\) sec\(^{-1}\) in the upper mesosphere and reaches a maximum of about \(10^9 \) cm\(^{-3}\) sec\(^{-1}\) for an overhead sun below the stratopause (see Fig. 5). The variation of the production of \(\text{O}^1(D) \) atoms with the solar zenith angle is important and leads to a rapid decrease from the stratopause to the tropopause.

In order to determine the concentration of \(\text{O}^1(D) \) atoms in a sunlit atmosphere it is necessary to introduce the effect of the principal loss processes, namely deactivation by \(\text{N}_2 \) and \(\text{O}_2 \). All experimental values [DEMORE and RAPER, 1964; SNELLING and BAIR, 1967; YOUNG and BLACK, 1967; YOUNG et al, 1969; NOXON, 1969, 1970] show that the quenching rate coefficient is greater than \(10^{-11} \) cm\(^3\) sec\(^{-1}\) and may reach \(10^{-10} \) cm\(^3\) sec\(^{-1}\). The following working value for the whole homosphere is adopted here

\[
 k_{q}(\text{O}^1(D), M) = 5 \times 10^{-11} \text{cm}^3 \text{sec}^{-1} \tag{12a}
\]

which leads to

\[
 n[\text{O}^1(D)] = 2 \times 10^{10} n(\text{O}_3) J_3(\text{O}^1(D))/n(M) \tag{12b}
\]

where \(n(\text{O}_3) J_3(\text{O}^1(D)) \) is the production of \(\text{O}^1(D) \) atoms illustrated in Figure 5. The photoequilibrium concentrations for various solar zenith angles are given in Table 1; the error involved should be less than 50%. A concentration peak less than \(10^3 \) cm\(^{-3}\) occurs near the stratopause for an overhead sun. Concentrations of \(\text{O}^1(D) \) greater than \(10^3 \) cm\(^{-3}\) are not possible.

At the mesopause, the concentration of \(\text{O}^1(D) \) atoms begins to increase again due to the photodissociation of \(\text{O}_3 \) in the Schumann-Runge continuum. For an overhead sun the following concentrations are obtained:

Altitude (km)

\[
\begin{array}{ccccccc}
95 & 100 & 105 & 110 & 115 & 120 \\
\end{array}
\]

Concentration \(\text{O}^1(D) \) (cm\(^{-3}\))

\[
\begin{array}{ccccccc}
4 \times 10^2 & 10^3 & 2 \times 10^3 & 4 \times 10^3 & 5 \times 10^3 & 4 \times 10^3 \\
\end{array}
\]

As far as the \(\text{O}^1(S) \) atoms are concerned, their low collisional deactivation with \(\text{N}_2 \) [STHUL and WELGE, 1969].

Table 1

Concentration of \(\text{O}^1(D) \) in a sunlit atmosphere. Equilibrium conditions

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>sec(\chi = 1) (cm(^{-3}))</th>
<th>sec(\chi = 2) (cm(^{-3}))</th>
<th>sec(\chi = 4) (cm(^{-3}))</th>
<th>sec(\chi = 6) (cm(^{-3}))</th>
<th>Horizon (cm(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>2.5</td>
<td>0.6</td>
<td>5.6</td>
<td>6.2</td>
<td>—</td>
</tr>
<tr>
<td>25</td>
<td>(1.1 \times 10^1)</td>
<td>3.2</td>
<td>(5.1 \times 10^{-1})</td>
<td>(1.0 \times 10^{-1})</td>
<td>—</td>
</tr>
<tr>
<td>30</td>
<td>(4.4 \times 10^1)</td>
<td>(1.6 \times 10^1)</td>
<td>4.0</td>
<td>1.4</td>
<td>(2.7 \times 10^{-9})</td>
</tr>
<tr>
<td>35</td>
<td>(1.5 \times 10^2)</td>
<td>(6.6 \times 10^1)</td>
<td>(2.4 \times 10^1)</td>
<td>(1.1 \times 10^1)</td>
<td>(4.0 \times 10^{-4})</td>
</tr>
<tr>
<td>40</td>
<td>(4.4 \times 10^2)</td>
<td>(2.1 \times 10^2)</td>
<td>(9.9 \times 10^1)</td>
<td>(5.9 \times 10^1)</td>
<td>(5.2 \times 10^{-1})</td>
</tr>
<tr>
<td>45</td>
<td>(7.8 \times 10^2)</td>
<td>(4.3 \times 10^2)</td>
<td>(2.1 \times 10^2)</td>
<td>(1.4 \times 10^2)</td>
<td>8.0</td>
</tr>
<tr>
<td>50</td>
<td>(7.9 \times 10^2)</td>
<td>(6.0 \times 10^2)</td>
<td>(3.8 \times 10^2)</td>
<td>(2.6 \times 10^2)</td>
<td>(2.7 \times 10^1)</td>
</tr>
<tr>
<td>55</td>
<td>(5.6 \times 10^2)</td>
<td>(5.1 \times 10^2)</td>
<td>(4.3 \times 10^2)</td>
<td>(3.6 \times 10^2)</td>
<td>(5.7 \times 10^1)</td>
</tr>
<tr>
<td>60</td>
<td>(3.3 \times 10^2)</td>
<td>(3.2 \times 10^2)</td>
<td>(3.0 \times 10^2)</td>
<td>(2.9 \times 10^2)</td>
<td>(1.0 \times 10^2)</td>
</tr>
<tr>
<td>65</td>
<td>(2.0 \times 10^2)</td>
<td>(1.9 \times 10^2)</td>
<td>(1.9 \times 10^2)</td>
<td>(1.9 \times 10^2)</td>
<td>(1.3 \times 10^2)</td>
</tr>
<tr>
<td>70</td>
<td>(1.2 \times 10^2)</td>
<td>(1.2 \times 10^2)</td>
<td>(1.2 \times 10^2)</td>
<td>(1.2 \times 10^2)</td>
<td>(1.0 \times 10^2)</td>
</tr>
</tbody>
</table>
and their moderate deactivation by O_2 [STHUL and WELGE, 1969; BLACK et al, 1969]

$$k_{Q(1S, O_2)} = 3 \times 10^{-13} \text{ cm}^3 \text{ sec}^{-1} \quad (13\,b)$$

lead to equilibrium conditions written as follows:

$$n[O(1S)] = 10^{13} n(O_3) J_3(1S)/n(M). \quad (13\,c)$$

Thus, equations (12b) and (13c) lead to

$$\frac{n[O(1S)]}{n[O(1D)]} = \frac{500 J_3(1S)}{J_3(1D)} \quad (14)$$

Numerical results for an overhead sun are given in the following table:

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>100</th>
<th>50</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J_3(1S)$ (sec$^{-1}$)</td>
<td>3.5×10^{-6}</td>
<td>2.7×10^{-6}</td>
<td>3.0×10^{-7}</td>
</tr>
<tr>
<td>$J_3(1D)$ (sec$^{-1}$)</td>
<td>8.6×10^{-3}</td>
<td>3.4×10^{-3}</td>
<td>2.1×10^{-4}</td>
</tr>
<tr>
<td>$n[O(1S)]/n[O(1D)]$</td>
<td>0.2</td>
<td>0.4</td>
<td>0.7</td>
</tr>
</tbody>
</table>

From that table in which $J_3(1S)$ is the maximum possible value it is clear that the concentrations of the $1S$ oxygen atoms produced by the ozone photodissociation are a fraction of that of the $1D$ oxygen atoms. An oxidizing reaction with $O(1S)$ atoms requires a rate coefficient greater than rates coefficient with $O(1D)$ in order to be compared with (7), (8) and (9). This cannot happen since the deactivation coefficients of $O(1S)$ at $300 \, ^\circ\text{K}$ are of the order of $3 \times 10^{-16} \, \text{ cm}^3 \, \text{sec}^{-1}$ with molecular hydrogen, $5 \times 10^{-14} \, \text{ cm}^3 \, \text{sec}^{-1}$ with methane and $7 \times 10^{-13} \, \text{ cm}^3 \, \text{sec}^{-1}$ with water vapor [FILSETH et al, 1970].

III. Stratospheric Conditions

From the foregoing discussion it is apparent that the dissociation mechanism of H_2O, CH_4 and H_2 in the stratosphere is an oxidation process by $1D$ oxygen atoms. However, the vertical distribution of H_2, CH_4 and H_2O in the stratosphere can be maintained by atmospheric mixing only if the oxidation process is a very slow reaction [BATES and NOICOLET 1965].

In the presence of eddy diffusion, the vertical speed w_1 of constituent of scale height H_1 can be written as follows [NOICOLET, 1968]

$$w_1 = \frac{D_e}{H} \left[\frac{H}{H_1} - 1 \right] \quad (15)$$

in which D_e is the eddy diffusion coefficient and H is the atmospheric scale height. The diffusive upward current of CH_4 molecules is, therefore, given by

$$F_{CH_4} = n(CH_4) w_{CH_4} \quad (16)$$

and must correspond to about

$$F_{CH_4} = \frac{1}{2} a\ast_{CH_4} w_{CH_4} \quad (17)$$

in order to replace the methane which is destroyed chemically in a sunlit atmosphere by reaction with excited oxygen atoms. Using numerical values in (16) and (17) it is found that eddy diffusion is necessary to maintain CH_4 molecules in the stratosphere.

If the ratio of the local scale height $H(CH_4)/H(M) = 1/2$ it is found that an eddy diffusion coefficient greater than $10^4 \, \text{ cm}^2 \, \text{sec}^{-1}$ is required near the stratosphere (cf. Fig. 6). Furthermore, a mixing distribution of CH_4, i.e. scale height, $H = 1.1 \, H(CH_4)$ implies a permanent eddy diffusion coefficient greater than $10^5 \, \text{ cm}^2 \, \text{sec}^{-1}$ (Fig. 6). It seems, therefore, that it is extremely difficult to maintain a constant mixing ratio of methane in the stratosphere.

By an argument similar to that used in connection with the distribution of methane, it may be found that H_2 undergoes the same processes (Fig. 7). It is clear also that the removal of a single atom of H_2O through a reaction with an excited oxygen atom leads to a dissociation of the molecule at a rate which has a peak in the upper stratosphere. Numerical results corresponding to $H = 2H(H_2O)$ and $H = 1.1H(H_2O)$ are illustrated in Figure 8 where eddy diffusion coefficients at the stratopause should be not less than $10^4 \, \text{ cm}^2 \, \text{sec}^{-1}$ and $10^5 \, \text{ cm}^2 \, \text{sec}^{-1}$, respectively. In the mesosphere, where the photodissociation of water vapour occurs, it is clear that the eddy diffusion must go up to $5 \times 10^6 \, \text{ cm}^2 \, \text{sec}^{-1}$ to maintain a mixing distribution at the mesopause.

![Fig. 6](image-url)
Since it is extremely difficult to assume that permanent eddy diffusion coefficients are more than $10^5 ~\text{cm}^2 ~\text{sec}^{-1}$ in the upper stratosphere, a decrease of the ratios $n(H_2)/n(M)$ and $n(CH_4)/n(M)$ must be considered in the stratosphere. It seems, therefore, that one may assume that in the region below 35 km, H_2 and CH_4 are oxidized and lead to H_2O, introducing the possibility of an increase in the mixing ratio $n(H_2O)/n(M)$. The behaviour of water vapour is completely different from that of methane and molecular hydrogen for which there is no possibility of immediate re-formation after the attack by the oxidation processes.

All products of the oxidation and dissociation of H_2, CH_4 and H_2O lead to the formation of water vapour through atomic hydrogen, hydroxyl and hydroperoxyl radicals. When an uniform mixing is accepted for H_2O in the stratosphere, the hypothesis is made that water vapour is involved in a sufficiently rapid catalytic action so that an anomalously high eddy diffusion coefficient ($> 10^5 ~\text{cm}^2 ~\text{sec}^{-1}$ at the stratosphere, cf. Fig. 8) is not required. At the mesopause and in the lower thermosphere, where the H_2O re-formation is slow, the eddy diffusion leads to a vertical transport of H_2O molecules from the mesosphere.

IV. HYDROGEN-OXYGEN ATMOSPHERE

In order to describe a hydrogen-oxygen atmosphere in a simple way, it is necessary to eliminate the less probable reactions [NICOLET, 1966].

The principal reactions between atomic hydrogen, hydroxyl and hydroperoxyl radicals in an ozone-atomic oxygen atmosphere are shown in Figure 9. It is clear that the atomic hydrogen concentration must increase with the atomic oxygen concentration and that the hydroperoxyl radical concentration increases with the ozone concentration.

TABLE II

Photodissociation coefficient of water vapour by Lyman-α

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>$\text{sec} \chi = 1$ (sec$^{-1}$)</th>
<th>Ratio $\text{sec} \chi = 4$/sec$ \chi = 1$</th>
<th>Ratio $\text{sec} \chi = 6$/sec$ \chi = 1$</th>
<th>Ratio Horizon/sec$ \chi = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>4.0×10^{-6}</td>
<td>0.76</td>
<td>0.63</td>
<td>2.24×10^{-2}</td>
</tr>
<tr>
<td>85</td>
<td>3.5×10^{-6}</td>
<td>0.52</td>
<td>0.31</td>
<td>1.10×10^{-4}</td>
</tr>
<tr>
<td>80</td>
<td>2.6×10^{-6}</td>
<td>0.21</td>
<td>7.3×10^{-2}</td>
<td>6.8×10^{-10}</td>
</tr>
<tr>
<td>75</td>
<td>1.3×10^{-6}</td>
<td>2.7×10^{-1}</td>
<td>2.5×10^{-3}</td>
<td>—</td>
</tr>
<tr>
<td>70</td>
<td>3.0×10^{-7}</td>
<td>3.3×10^{-2}</td>
<td>1.6×10^{-8}</td>
<td>—</td>
</tr>
<tr>
<td>65</td>
<td>1.5×10^{-8}</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Principal reactions in which H, OH and HO₂ are involved with O and O₃.

A simple expression for the ratio $n(\text{OH})/n(\text{H})$ in the whole homosphere where an adequate number of oxygen atoms are present is

$$\frac{n(\text{OH})}{n(\text{H})} = \frac{a_{1} n(M) n(O)}{a_{6} n(O_{2})} + \frac{a_{2} n(O_{3})}{a_{7} n(O)}. \quad (18)$$

In the same way the expression for the equilibrium ratio $n(\text{HO}_2)/n(\text{H})$ is obtained

$$\frac{n(\text{HO}_2)}{n(\text{H})} = \frac{a_{1} n(M) n(O_{2})}{a_{5} n(O)} + \frac{a_{6} n(O_{3})}{a_{7} n(O)}. \quad (19)$$

Expressions (18) and (19), assuming $a_{5} = a_{7}$, lead to

$$\frac{n(\text{HO}_2)}{n(\text{OH})} = \frac{a_{1} n(M) n(O)}{a_{5} n(O)} + \frac{a_{6} n(O_{3})}{a_{7} n(O)}. \quad (20)$$

In equation (18), (19) and (20), the three-body reaction of atomic hydrogen with molecular oxygen is of greater importance:

$$(a_{3}) \; \text{H} + \text{O}_3 \rightarrow \text{O} + \text{HO}_2 + 22 \text{kcal} \quad (23)$$

with a rate coefficient a_{3} which has not yet been measured, and by a three-body association

$$(a_{4}) \; \text{OH} + \text{O} + \text{M} \rightarrow \text{M} + \text{OH}_2 + 63 \text{kcal} \quad (24)$$

with a conventional value of the three-body rate coefficient a_{4}, are neglected compared with reaction (21).

The bimolecular process

$$(a_{5}) \; \text{OH} + \text{O} \rightarrow \text{H} + \text{O}_2 + 16.6 \text{kcal} \quad (25a)$$

is an important reaction [Clyne and Thrush, 1963b; Kaufman, 1964, 1969] with a rate coefficient

$$a_{5} = 3 \times 10^{-12} T^{1/2} \text{cm}^3 \text{sec}^{-1} \quad (25b)$$

leading to the value $5 \times 10^{-11} \text{cm}^3 \text{sec}^{-1}$ at 0°C.

This reaction (25) in conjunction with (22) forms an important chain leading to the formation of oxygen molecules. In other words, atomic hydrogen acts as a catalyst for the destruction of odd oxygen atoms, and the atomic oxygen and ozone distributions are affected. The catalytic action of hydrogen is also of interest, in that it influences the nocturnal concentrations.

Other reactions involve hydroxyl radicals and ozone. The reaction

$$(a_{6}) \; \text{OH} + \text{O}_3 \rightarrow \text{HO}_2 + \text{O}_2 + 39 \text{kcal} \quad (26a)$$

for which no direct measurement has been reported should have an upper limit of about $5 \times 10^{-13} \text{cm}^3 \text{sec}^{-1}$ at room temperature [Kaufman, 1964, 1969]. With an activation energy of 4 kcal [Bates and Nicolet, 1950c], the following rate coefficient

$$a_{6} = 1.5 \times 10^{-11} T^{1/2} e^{-2000/T} \text{cm}^3 \text{sec}^{-1} \quad (26b)$$
leads to \(1.5 \times 10^{-13} \text{ cm}^3 \text{ sec}^{-1}\) at the stratopause (270 K) and \(5 \times 10^{-15} \text{ cm}^3 \text{ sec}^{-1}\) at the tropopause (190 K) which is less than the value which has been used in various aeronomic calculations [Hunt, 1966; Hesstvedt, 1968]. With a steric hindrance factor, it becomes

\[
a_6 = 1.5 \times 10^{-12} T^{1/2} e^{-1500/T} \text{ cm}^3 \text{ sec}^{-1}\ (26\ c)
\]

which leads to \(10^{-13} \text{ cm}^3 \text{ sec}^{-1}\) at the stratopause and \(7.5 \times 10^{-15} \text{ cm}^3 \text{ sec}^{-1}\) at the tropopause; (26 c) should be a maximum value. Nevertheless, such a reaction should be considered as a loss process of hydroxyl radicals; it has been introduced to explain the photolysis of ozone in the presence of water vapour. However, the following reaction between ozone and hydroperoxyl radicals has been also introduced in the OH-catalyzed chain decomposition of ozone

\[
(a_{6d}) \ ; \ \text{HO}_2 + \text{O}_3 \rightarrow \text{OH} + 2 \text{O}_2 + 31 \text{kcal} \ (26\ d)
\]

There is no experimental evidence for such a reaction [Demore, 1967 b]; in any case its rate coefficient must be very small since such a reaction requires the simultaneous breakage of the bonds \(\text{OH-O}\) and \(\text{O}_2\). The fact that \(\text{OH}\) radicals are involved in the catalyzed chain decomposition of \(\text{O}_3\) in laboratory investigation is explained by the presence of vibrationally excited \(\text{OH}\) molecules which are a major reaction product [Kaufman, 1964; Demore, 1967 b]. In stratospheric conditions, such \(\text{OH}^+\) excited molecules cannot play an active role and \(\text{HO}_2\) as a chain carrier [Hampson, 1965; Hunt, 1966; Hesstvedt, 1968; Cruzen, 1969] is therefore doubtful. In fact, the principal reaction leading to \(\text{OH}\) involves atomic oxygen [Kaufman, 1964],

\[
(a_1) \ ; \ \text{O} + \text{HO}_2 \rightarrow \text{O}_2 + \text{OH}^+ v \leq 6 + 55 \text{ cal} \ (27\ a)
\]

for which a rate coefficient

\[
a_7 = 3 \times 10^{-12} T^{1/2} \text{ cm}^3 \text{ sec}^{-1}\ (27\ b)
\]

identical to \(a_5\) is adopted in order to simplify the aeronomic analysis (cf. equation 20), even if it is perhaps a factor of two too high [Kaufman, 1964].

It may be noted that reaction (27) may lead to excited \(\text{OH}\) molecules up to the level of vibrational quantum numbers \(v \leq 6\) while reaction (22) can provide an energy to levels 7, 8 and 9 from which emission bands are observed in the airglow. Nevertheless, since atomic oxygen is an important minor constituent in the mesosphere, reaction (27) may lead to an additional emission of \(\text{OH}\) bands originating from levels of vibrational quantum number 6 or less, in the dayglow when atomic oxygen is present. It is expected, however, that deactivation processes of excited \(\text{OH}\) molecules are important in the middle and lower mesosphere. Reaction (22) leads to a peak in the lower thermosphere where the night-time emission is observed while (27) can play a role only below the mesopause.

Expressions (18) and (19) are obtained since it is assumed that

\[
a_7 n(\text{O}) > J_{\text{HO}_2} \quad (28)
\]

i.e. that the photodissociation coefficient of the hydroperoxyl radical is less important than the loss coefficient by reaction with atomic oxygen. Nothing is known about the photodissociation of the hydroperoxyl radical. Due to the similarity of the structure of \(\text{HO}_2\) and that of hydrogen peroxide, for which \(J_{\text{HO}_2} = 1.4 \times 10^{-4} \text{ sec}^{-1}\) and also to the high photodissociation coefficient of nitrogen peroxide \(J_{\text{NO}_2} = 3.5 \times 10^{-3} \text{ sec}^{-1}\), possible values such as

\[
10^{-3} \leq J_{\text{HO}_2} \leq 10^{-4} \text{ sec}^{-1} \quad (29)
\]

can be suggested. Thus, the photodissociation could play a role on the ratio \(n(\text{OH})/n(\text{HO}_2)\) in the lower stratosphere.

V. AERONOMIC PROCESSES OF WATER VAPOUR

After the photodissociation of water vapour in the mesosphere and lower thermosphere and the oxidizing reaction with \(\text{O}^+(\text{D})\) atoms (equations 9), the reactions between two hydroxyl radicals lead to its re-formation

\[
(a_{16}) \ ; \ \text{OH} + \text{OH} \rightarrow \text{H}_2\text{O} + \text{O} + 17 \text{kcal} \quad (30\ a)
\]

with an activation energy not greater than 2 kcal [Kaufman, 1964, 1969; Westenberg and De Haas, 1965; Wilson and O'Donovan, 1967]. A minimum rate coefficient in the stratosphere and mesosphere will be given by

\[
a_{16} = 5 \times 10^{-12} T^{1/2} e^{-1000/T} \text{ cm}^3 \text{ sec}^{-1}. \quad (30\ b)
\]

In the same way, the reaction between hydroxyl and perhydroxyl radicals leads to \(\text{H}_2\text{O}\) [Foner and Hudson, 1962; Kaufman, 1964]

\[
(a_{17}) \ ; \ \text{OH} + \text{HO}_2 \rightarrow \text{H}_2\text{O} + \text{O}_2 + 72 \text{kcal} \quad (31\ a)
\]

with perhaps a small activation energy (~ 1 kcal) to lead to a rate coefficient such as

\[
a_{17} = 3 \times 10^{-13} T^{1/2} e^{-500/T}. \quad (31\ b)
\]

Other reactions can lead to the formation of \(\text{H}_2\text{O}\), but they are not important in the mesosphere and stratosphere compared with other reactions leading to its re-formation.

Another two-body process yielding hydrogen peroxide must be considered

\[
(a_{27}) \ ; \ \text{HO}_2 + \text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2 + 42 \text{kcal} \quad (32\ a)
\]

for which we adopt [Niclet, 1964] a rate coefficient which is similar to \(a_{16}\)

\[
a_{27} = 5 \times 10^{-12} T^{1/2} e^{-1000/T} \text{ cm}^3 \text{ sec}^{-1}. \quad (32\ b)
\]
Inside the mesosphere and in the whole stratosphere, the following equation may be used

\[
\frac{dn(\text{OH})}{dt} + \frac{dn(\text{HO}_2)}{dt} + 2a_{16}n^2(\text{OH}) + 2a_{17}n(\text{OH})n(\text{HO}_2) + 2a_{27}n^2(\text{HO}_2) = 2P(\text{H}) \quad (33)
\]

where \(P(\text{H})\) is the direct or indirect production of hydrogen atoms, and in order to simplify for an approximate calculation \(a_{16} = a_{27} = a_{17}/2\).

\[
\frac{dn(\text{OH})}{dt} + \frac{dn(\text{HO}_2)}{dt} + 2a_{16}[n(\text{OH}) + n(\text{HO}_2)]^2 = 2P(\text{H}) \quad (34a)
\]

For night-time conditions (34a) becomes

\[
\frac{dn(\text{OH})}{dt} + \frac{dn(\text{HO}_2)}{dt} + 2a_{16}[n(\text{OH}) + n(\text{HO}_2)]^2 = 0 \quad (34b)
\]

which shows that there is a nocturnal decay [Nicolet, 1964] of the OH and \(\text{HO}_2\) concentrations in the stratosphere and mesosphere. At the mesopause level, the photodissociation of \(\text{H}_2\text{O}\) by Lyman-\(\alpha\) is the principal production process. At lower altitudes the reaction of \(\text{O}(^1\text{D})\) atoms with \(\text{H}_2\text{O}\) and other hydrogen compounds is the source. Table II indicates the variation of the photodissociation coefficient of \(\text{H}_2\text{O}\) with altitude and the solar zenith angle. A complete knowledge (see Fig. 8) of the vertical eddy diffusion coefficient is needed in order to determine the exact vertical distribution of \(\text{H}_2\text{O}\). Values varying from \(5 \times 10^5 \text{ cm}^2 \text{ sec}^{-1}\) and \(2 \times 10^6 \text{ cm}^2 \text{ sec}^{-1}\) at 65 km to \(7 \times 10^6 \text{ cm}^2 \text{ sec}^{-1}\) have been assumed [Hesstvedt, 1968]. If the vertical eddy diffusion coefficient is greater than \(10^3 \text{ cm}^2 \text{ sec}^{-1}\), it is certain (Fig. 8) that the scale height of water vapour \(\text{H}(\text{H}_2\text{O}) \geq \frac{1}{2} \text{H}\) the atmospheric scale height.

Eddy diffusion coefficients between \(10^6\) and \(10^7 \text{ cm}^2 \text{ sec}^{-1}\) indicate that \(n(\text{H}_2\text{O})/n(M)\) will not fall off sharply through the lower thermosphere.

In the lower mesosphere and stratosphere it is possible to deduce the photochemical conditions with (34). The essential result (see Table III) is that the time to reach the equilibrium (50 % of the equilibrium concentration or from 50 % to 80 %) is less than three hours in the whole stratosphere and the mesosphere up to 70 km. Thus, \(\text{H}_2\text{O}\) can be kept in mixing conditions since loss and production processes of water vapour are sufficiently rapid. On the other hand, equilibrium conditions can be used to compute (see Table III) the total concentration \(n(\text{OH}) + n(\text{HO}_2)\) which is not less than \(10^7 \text{ cm}^{-3}\) and reaches \(10^6 \text{ cm}^{-3}\) in the upper stratosphere. Numerical values which are given in Table III correspond to overhead sun conditions and different conditions are illustrated in Figure 10 where the concentrations correspond to various solar zenith angles. Variations in the stratosphere are particularly important in its lower part. Above 35 km the total concentration \(n(\text{OH}) + n(\text{HO}_2)\) does not change very much except when the sun is near the horizon.

Table III

Production of \(\text{OH}\) and \(\text{HO}_2\) by oxidation of \(\text{H}_2\text{O}\) \((P)\), total concentration \(n(\text{OH}) + n(\text{HO}_2)\) for an overhead sun, and the time to reach 50 % of the equilibrium value.

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>(P) (cm(^{-3}) sec(^{-1}))</th>
<th>(n(\text{OH}) + n(\text{HO}_2)) (cm(^{-3}))</th>
<th>Equilibrium Time (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>(7.2 \times 10^2)</td>
<td>(3.3 \times 10^7)</td>
<td>(1.06 \times 10^4)</td>
</tr>
<tr>
<td>20</td>
<td>(2.6 \times 10^3)</td>
<td>(5.8 \times 10^7)</td>
<td>(6.2 \times 10^3)</td>
</tr>
<tr>
<td>25</td>
<td>(5.1 \times 10^3)</td>
<td>(7.4 \times 10^7)</td>
<td>(4.0 \times 10^3)</td>
</tr>
<tr>
<td>30</td>
<td>(9.3 \times 10^3)</td>
<td>(9.2 \times 10^7)</td>
<td>(2.7 \times 10^3)</td>
</tr>
<tr>
<td>35</td>
<td>(1.5 \times 10^4)</td>
<td>(1.0 \times 10^8)</td>
<td>(1.8 \times 10^3)</td>
</tr>
<tr>
<td>40</td>
<td>(2.1 \times 10^4)</td>
<td>(1.1 \times 10^8)</td>
<td>(1.3 \times 10^3)</td>
</tr>
<tr>
<td>45</td>
<td>(2.0 \times 10^4)</td>
<td>(9.6 \times 10^7)</td>
<td>(1.3 \times 10^3)</td>
</tr>
<tr>
<td>50</td>
<td>(1.1 \times 10^4)</td>
<td>(7.1 \times 10^7)</td>
<td>(1.8 \times 10^3)</td>
</tr>
<tr>
<td>55</td>
<td>(4.2 \times 10^4)</td>
<td>(4.4 \times 10^7)</td>
<td>(2.9 \times 10^3)</td>
</tr>
<tr>
<td>60</td>
<td>(1.4 \times 10^3)</td>
<td>(3.1 \times 10^7)</td>
<td>(5.9 \times 10^3)</td>
</tr>
<tr>
<td>65</td>
<td>(4.6 \times 10^2)</td>
<td>(2.1 \times 10^7)</td>
<td>(1.3 \times 10^4)</td>
</tr>
<tr>
<td>70</td>
<td>(-2.8 \times 10^2)</td>
<td>(1.6 \times 10^7)</td>
<td>(2.8 \times 10^4)</td>
</tr>
</tbody>
</table>
Total concentration of hydroxyl and hydroperoxyl radicals in the mesosphere and stratosphere for photoequilibrium conditions corresponding to various solar zenith angles. Overhead sun, sec $X = 1$; sec $X = 2$, 4 and 6; sun at the horizon, $X = 90^\circ$.

Thus, near 70 km, in the middle of the mesosphere where the following concentrations can be considered for an overhead sun: $n(O) = 4 \times 10^9$ cm$^{-3}$; $n(O_3) = 10^7$; $n(H) = 10^7$; $n(OH) = 10^7$; $n(HO_2) = 7 \times 10^6$, photochemical conditions seem to be well established. Below 40 km, however, it is difficult to determine the exact value of the ratio $n(HO_2)/n(OH)$ since the reaction of HO$_2$ with O$_3$ is not well known. Furthermore, the effect of nitrogen oxides must be introduced.

VI. EFFECT OF NITROGEN OXIDES

The just described reactions chains which contribute to the dissociation and re-formation of water vapour are not yet adequate since the formation and destruction of H, OH and HO$_2$ may depend on reactions with nitric oxide.

A rapid reaction [PHILLIPS and SCHIFF, 1962] such as

$$a_{25} ; H + NO_2 \rightarrow OH + NO + 30 \text{ kcal}$$

(35 a)

with a rate coefficient

$$a_{25} = 2 \times 10^{-12} \; T^{1/2} \; \text{cm}^3 \; \text{sec}^{-1}$$

(35 b)

is not an important aeronomic process compared with another rapid reaction [TYLER, 1962]

$$a_{26} ; HO_2 + NO \rightarrow OH + NO_2 + 9 \text{ kcal}$$

(36 a)

No data are available on the rate coefficient. Assuming two extreme values

$$a_{26} = 3 \times 10^{-12} \; T^{1/2} \; \text{cm}^3 \; \text{sec}^{-1}$$

(36 b)

in order to reach not less than 5×10^{-11} cm$^{-3}$ sec$^{-1}$ at 273 $^\circ$K, and

$$a_{26} = 3 \times 10^{-12} \; T^{1/2} \; e^{-1250/T} \; \text{cm}^3 \; \text{sec}^{-1}$$

(36 c)

leading to about 10^{-11} cm$^{-3}$ sec$^{-1}$ at 500 $^\circ$K, it is possible to see that a leading role could be played by (36 a) if $n(NO) > 10^8$ cm$^{-3}$ in the stratosphere. Thus, equation (20) must be replaced in the lower stratosphere by

$$n(HO_2) = \frac{\{n(OH) \left(a_1 n(M) n(O_2) + a_2 n(O) \right) + a_6 n(O_3) \}}{\{n(OH) \left(a_1 n(M) n(O_2) + a_2 n(O_3) \right) \}}$$

(37)

which is an approximation of the more general equation

$$n(HO_2) = \frac{\{n(OH) \left(a_1 n(M) n(O_2) + a_2 n(O_3) \right) + a_6 n(O_3) \}}{\{n(OH) \left(a_1 n(M) n(O_2) + a_2 n(O_3) \right) \}}$$

(38)

where the various loss processes of HO$_2$ are considered, namely photodissociation, the reaction with OH and the production of hydrogen peroxide.

The photodissociation process (6)

$$H_2O_2 + hv \rightarrow OH + OH$$

(39)

does not seem to be an important mechanism even if the photodissociation coefficient for zero optical depth is not less than 10^{-4} sec$^{-1}$. In the stratosphere it reaches less than 5×10^{-4} sec$^{-1}$ at 20 km. Among the several loss processes the reaction with a hydroxyl radical

$$a_{30} ; OH + H_2O_2 \rightarrow H_2O + HO_2 + 30 \text{ kcal}$$

(40)

seems to be the most important mechanism since [GRENIER, 1968]

$$a_{30} = 4 \times 10^{-13} \; T^{1/2} \; e^{-600/T} \; \text{cm}^3 \; \text{sec}^{-1}.$$

(41)

If nitrogen oxides are involved [NICOLET, 1965], hydrogen peroxide decomposes according to overall reactions which may come, for example, from
(a_{12}) \cdot \text{NO} + \text{H}_2\text{O}_2 \rightarrow \text{HNO}_2 + \text{OH} + 11 \text{kcal} \quad (42)
(a_{13}) \cdot \text{NO}_2 + \text{H}_2\text{O}_2 \rightarrow \text{HNO}_3 + \text{OH} + 4 \text{kcal} \quad (43)

for which the rate coefficients are not known. It is clear that of the various reactions which the oxides of nitrogen can undergo with hydrogen peroxide those which may give nitrous acid and nitric acid respectively must be considered. In order to reach about $10^{-12} \text{cm}^3 \text{sec}^{-1}$ at 30 km, a rate coefficient

$$a_{32} = a_{33} = 5 \times 10^{-12} T^{1/2} e^{-1000/T} \text{cm}^3 \text{sec}^{-1} \quad (44)$$

with an activation energy of not more than 2 kcal is required. With such a value, NO and NO$_2$ concentrations greater than 10^8 cm^{-3} lead to loss coefficients of H$_2$O greater than the photodissociation coefficient. It seems possible, therefore, that nitrogen oxides can affect the concentration of H$_2$O in the stratosphere and that the ratio $n(\text{OH})/n(\text{H}_2\text{O}_2)$ depends on the action of nitric oxide.

Hence, the following equation must be used

$$\frac{dn(\text{H}_2\text{O}_3)}{dt} + n(\text{H}_2\text{O}_2) [J_{\text{H}_2\text{O}_2} + a_{32} n(\text{NO}) + a_{33} n(\text{NO}_2)] = a_{27} n^2(\text{HO}_2) \quad (45)$$

in order to determine the behaviour of hydrogen peroxide in the stratosphere and mesosphere.

The fact that nitrogen peroxide [Ackerman and Frimout, 1969] and nitric acid [Mucray et al, 1969] have been recently observed in the stratosphere is an additional indication that the nitrogen oxides play a role in a hydrogen-oxygen atmosphere. This shows that the introduction of nitrogen oxides decreases the concentration of hydroperoxy radicals and hydrogen peroxide produced in an ozone-atomic oxygen atmosphere. In place of the simple scheme presented in Figure 9 it is necessary to consider the whole system (Fig. 11) not only with the dissociation of H$_2$O into OH and H and the oxidation of H$_2$O leading to two OH radicals, but also with respect to the re-formation of water vapour by reaction between OH and HO$_2$ with concentrations (Fig. 12) depending on reactions of HO$_2$ and H$_2$O$_2$ with nitrogen oxides.

Another effect such as a reaction with carbon monoxide occurs but does not seem to play a leading role. Due to the action of nitrogen oxides in the stratosphere, OH is present and reacts with CO to form CO$_2$. Such a reaction must lead to a stratospheric CO sink. Nevertheless, an experimental analysis of the reactions between carbon monoxide with hydroperoxy radicals and hydrogen peroxide is required in order to determine the chemical behaviour of the minor constituents in the lower stratosphere.

VII. MOLECULAR HYDROGEN

The principal sink of molecular hydrogen in the stratosphere and mesosphere is (7) which leads to the following values of the oxidation coefficient for an overhead sun:

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>(sec$^{-1}$)</td>
<td>2.5×10^{-10}</td>
<td>4.4×10^{-9}</td>
<td>4.4×10^{-8}</td>
<td>7.9×10^{-8}</td>
<td>3.3×10^{-8}</td>
<td>1.2×10^{-8}</td>
</tr>
</tbody>
</table>

The most important source of molecular hydrogen [Bates and Nicolet, 1965]

$$(a_{23}) \cdot \text{H} + \text{HO}_2 \rightarrow \text{H}_2 + \text{O}_2 + 57 \text{kcal} \quad (46a)$$

with a rate coefficient which can be given by

$$a_{23} = 5 \times 10^{-12} T^{1/2} e^{-1000/T} \quad (46b)$$

leads to an important production of hydrogen molecules in the upper mesosphere (cf. Table IV for H and HO$_2$ concentrations). The production is

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>75</th>
<th>80</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>(cm$^{-3}$ sec$^{-1}$)</td>
<td>7×10^4</td>
<td>8×10^4</td>
<td>4.5×10^4</td>
<td>3×10^2</td>
<td>3.5×10^3</td>
<td>4×10^1</td>
</tr>
</tbody>
</table>
Concentrations of hydroxyl and hydroperoxyl radicals depending on reactions with nitrogen oxides. Extreme minimum of OH and extreme maximum of HO$_2$ without nitrogen oxides effect on HO$_2$ and H$_2$O$_2$, respectively.

Thus more molecular hydrogen is produced below the mesopause than is destroyed there; molecular hydrogen from this layer flows downwards into the upper stratosphere where process (7) converts it into atomic hydrogen and hydroxyl radicals. It also flows upwards into the thermosphere. However, the exact distribution depends on the eddy diffusion coefficient which is introduced into the continuity equation

$$\frac{\partial n(H_2)}{\partial t} + \frac{\partial [n(H_2)w]}{\partial z} + a^*_{H_2-0} n^* (O) n(H_2) = a_{23} n(H) n(OH)$$

where w is the eddy diffusion velocity given by (15).

A reliable estimate of the concentration of molecular hydrogen could be made only with appropriate values of the eddy diffusion coefficient which unfortunately are not known for the whole mesosphere, from the stratopause to the mesopause.

VIII. OZONE AND ATOMIC OXYGEN IN A HYDROGEN-OXYGEN ATMOSPHERE

In the stratosphere there is no important difference between a pure oxygen atmosphere and a hydrogen-oxygen atmosphere. This happens when the effect of hydrogen peroxide is not considered as a constituent playing an important aeronomic role and when the effect of nitric oxide and of nitrogen peroxide is important. Concentrations of NO$_2$ and NO greater than 10^9 cm$^{-3}$ lead to a sufficient destruction of H$_2$O$_2$. The conventional stratospheric equation

$$\frac{dn(O_3)}{dt} + 2n^2(O_3) \frac{J_3k_3}{k_2n(M)n(O_2)} = 2n(O_2)J_2$$

where the coefficients correspond to the following processes:

$$(J_2) : O_2 + hv (\lambda < 2420 \text{ Å}) \rightarrow O + O$$

$$(J_3) : O_3 + hv \rightarrow O_2 + O$$

$$(k_2) : O + O_2 + M \rightarrow O_3 + M$$

$$(k_3) : O + O_3 \rightarrow 2O_2$$

must be replaced by

$$\frac{dn(O_3)}{dt} + 2n^2(O_3) \frac{J_3k_3}{k_2n(M)n(O_2)} + n(O_3) a_2 n(H) n(OH) \left\{ \frac{a_5J_3}{k_2n(M)n(O_2)} + a_6 \right\} n(OH)$$

$$+ \left[\frac{a_7J_3}{k_2n(M)n(O_2)} + a_{6c} \right] n(HO_2) \right\} = 2n(O_2)J_2$$

in which the effect of H, OH and HO$_2$ reactions is represented by the symbol a from reactions (22), (25), (26) and (27).

If (50) is compared with (46), it is clear that the effect of hydrogen compounds is equivalent to an increase of the photodissociation coefficient J_3. In other words, the ozone photodissociation is increased by additional destruction processes of oxygen atoms [Bates and Nicolet, 1950; Hampson, 1965; Hunt, 1966; Hesstvedt, 1968; Crutzen, 1969] so that the equivalent O$_3$ photodissociation coefficient J_{3A} is written

$$J_{3A} = J_3 [1 + A]$$

where A is given by

$$A = \frac{a_2 n(H) k_2 n(M) n(O_2)}{2J_3 k_3 n(O)} + a_5 n(OH) \left[\frac{a_6}{a_5} \frac{k_2 n(M) n(O_2)}{J_3} \right] + a_7 n(HO_2) \left[\frac{a_{6d} k_2 n(M) n(O_2)}{a_5} \frac{J_3}{J_3} \right].$$

The conventional equation for equilibrium condition in the stratosphere is replaced by, using (50) and (51),

$$n(O_3) = \left[\frac{k_2 n(M) n^2(O_2)}{k_3 J_3 (1 + A)} \right]^{1/2}$$
The correction term \([1 + A]^{1/2}\) in the stratosphere where \(n(H)\) is negligible, \(a_{6c}\) very small, and \(a_{7} \simeq a_{5}\), can be written
\[
[1 + A]^{1/2} = \left[1 + \frac{a_{7} \left(n(HO_2) + n(OH) \right)}{2k_3 n(O_3)} \right] \simeq 1.5. \quad (54)
\]

An illustration of such an effect is given in Figure 13 which shows that below 35 km the vertical distribution of the ozone concentration corresponds to a departure from photochemical conditions. Transport processes are responsible for the determination of the vertical distribution. The equivalent value of the mixing ratio \(n(H_2O)/n(M)\) which is adopted is \(6.5 \times 10^{-6}\). Such a ratio has a small effect on the ozone concentration in the stratosphere (cf 54), and it seems that almost impossibly high mixing ratios \((5 \times 10^{-5}, 10^{-4})\) would be required in order to affect in a very sensitive way the ozone concentration in the lower stratosphere.

In the mesosphere there is an important difference between a pure oxygen atmosphere and a hydrogen-oxygen atmosphere. The corrections term which applies in the mesosphere
\[
[1 + A]^{1/2} = \left[1 + \frac{a_{2} n(H) k_2 n(M) n(O_2)/J_3 + a_{5} n(OH) + a_{7} n(HO_2)}{2k_3 n(O_3)} \right]^{1/2} \quad (55)
\]

increases from 1.5 at the stratopause to about 100 at the mesopause for the calculated values of \(H, OH\) and \(HO_2\) concentrations as indicated in Figure 14. There is a considerable decrease of the atomic oxygen concentration in the mesosphere and consequently a parallel decrease of the ozone concentration. Figure 15 illustrates the difference between an oxygen mesosphere and a hydrogen-oxygen mesosphere.

In the thermosphere, where atomic hydrogen is the most important hydrogen constituent, \(n(H)/n(OH) > 1\) and \(n(H)/n(HO_2) > 1\), its vertical distribution may correspond to a mixing distribution [Kockarts and Nicolet, 1962]. At 100 km, a concentration of the order of \(3.5 \times 10^{7} \text{ cm}^{-3}\) which leads to an escape rate of \(10^{8} \text{ atoms cm}^{-2} \text{ sec}^{-1}\) corresponds to the equivalent mixing ratio \(n(H_2O)/n(M) = 6.5 \times 10^{-6}\), i.e. the adopted values for the reaction of \(O(1D)\) atoms. It has been shown [Kockarts and Nicolet, 1962] that a molecular diffusion flow at the 100 km level
of \(F_D(H) = 2.5 \times 10^7 \ \text{cm}^{-2} \ \text{sec}^{-1} \) corresponds to an atomic hydrogen concentration of \(10^7 \ \text{cm}^{-3} \); with \(n(H)_{100 \ \text{km}} = 3.5 \times 10^7 \ \text{cm}^{-3} \), \(F_D(H) \approx 10^8 \ \text{cm}^{-2} \ \text{sec}^{-1} \). Under mixing conditions, molecular diffusion flow of water vapor \(F_D(H_2O) = 5 \times 10^7 \ \text{cm}^{-2} \ \text{sec}^{-1} \) requires a mixing ratio of the order \(6 \times 10^{-6} \), while the molecular diffusion flow of methane with the mixing ratio \(1.5 \times 10^{-6} \) is \(F_D(CH_4) = 7 \times 10^6 \ \text{cm}^{-2} \ \text{sec}^{-1} \) which is about 50% of the molecular diffusion flow of atomic hydrogen.

It may be easily seen from Table IV where the concentrations of atomic oxygen in the thermosphere \((\geq 85 \ \text{km})\) are fixed according to arbitrary eddy diffusion conditions and the concentrations of atomic hydrogen also in the thermosphere \((\geq 85 \ \text{km})\) follow a mixing distribution calibrated at 100 km in order to give \(n(H) = 3 \) to \(4 \times 10^7 \ \text{cm}^{-3} \), that ozone is still important while the hydroxyl and hydroperoxyl radicals concentrations are very small. Photochemical or chemical equilibrium conditions in the lower thermosphere between \(O \) and \(O_3 \) are given by the ratio

\[
\frac{n(O_3)}{n(O)} = \frac{k_2 n(M) n(O_2)}{J_3 + a_2 n(H)} \quad (56)
\]

since \(J_3 = 10^{-2} \ \text{sec}^{-1} \) and \(a_2 n(H) \) is of the same order. Thus, the vertical distribution of the ozone concentration in the thermosphere depends on the vertical distribution of the atomic oxygen concentration which may vary. Furthermore, there is an increase of the ozone concentration after sunset when \(J_3 = 0 \) if there is no simultaneous decrease of the atomic oxygen concentration. Dynamic effects acting on the vertical distribution of atomic oxygen modify the ozone distribution in the lower thermosphere and can explain the molecular oxygen emission in the airglow [EVANS and LLEWELLYN, 1970].

Below the mesopause, 85 to 80 km, the aeronomic conditions are such that they correspond to a transition region, and all concentrations in this altitude range are intermediate values between those resulting from mixing and from photochemical equilibrium. Such an aspect is clearly seen in Figure 14 where there is a discontinuity in the curves around 80 km. The discontinuity as it is shown in that figure must be considered only as an illustration of the extreme variability of aeronomic conditions below the mesopause. In other words, it must be stressed that any theoretical analysis in this part of the higher mesosphere and lower thermosphere is idealized and differs from the true atmosphere in that a discontinuity occurs which varies between day and night and with latitude and season depending on atomic oxygen subject to dynamic processes.

Manuscrit reçu le 2 avril 1970.

Table IV

Comparison of the daytime concentrations of \(O_3, \ \text{OH and HO}_2 \) for concentrations of atomic oxygen and hydrogen depending on mixing conditions in the lower thermosphere.

At and below 70 km, photochemical conditions.

<table>
<thead>
<tr>
<th>Altitude (km)</th>
<th>(n(O)) (cm(^{-3}))</th>
<th>(n(O_3)) (cm(^{-3}))</th>
<th>(n(H)) (cm(^{-3}))</th>
<th>(n(OH)) (cm(^{-3}))</th>
<th>(n(HO_2)) (cm(^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>(3.2 \times 10^{11})</td>
<td>(1.6 \times 10^6)</td>
<td>(3.5 \times 10^7)</td>
<td>(1.7 \times 10^2)</td>
<td>(6.5)</td>
</tr>
<tr>
<td>95</td>
<td>(3.3 \times 10^{11})</td>
<td>(1.3 \times 10^7)</td>
<td>(8.7 \times 10^7)</td>
<td>(3.2 \times 10^3)</td>
<td>(1.4 \times 10^2)</td>
</tr>
<tr>
<td>90</td>
<td>(3.0 \times 10^{11})</td>
<td>(1.1 \times 10^8)</td>
<td>(2.3 \times 10^8)</td>
<td>(7.0 \times 10^4)</td>
<td>(4.5 \times 10^3)</td>
</tr>
<tr>
<td>85</td>
<td>(3.0 \times 10^{10})</td>
<td>(1.0 \times 10^9)</td>
<td>(6.9 \times 10^8)</td>
<td>(2.0 \times 10^6)</td>
<td>(5.3 \times 10^4)</td>
</tr>
<tr>
<td>80</td>
<td>(1.4 \times 10^{10})</td>
<td>(1.4 \times 10^8)</td>
<td>(8.6 \times 10^6)</td>
<td>(2.2 \times 10^7)</td>
<td>(1.7 \times 10^7)</td>
</tr>
<tr>
<td>75</td>
<td>(3.8 \times 10^9)</td>
<td>(3.2 \times 10^8)</td>
<td>(5.1 \times 10^7)</td>
<td>(1.8 \times 10^7)</td>
<td>(1.3 \times 10^7)</td>
</tr>
<tr>
<td>70</td>
<td>(4.1 \times 10^9)</td>
<td>(1.0 \times 10^9)</td>
<td>(1.0 \times 10^7)</td>
<td>(9.5 \times 10^6)</td>
<td>(7.0 \times 10^6)</td>
</tr>
<tr>
<td>65</td>
<td>(5.1 \times 10^9)</td>
<td>(3.2 \times 10^9)</td>
<td>(6.0 \times 10^6)</td>
<td>(1.3 \times 10^7)</td>
<td>(8.7 \times 10^6)</td>
</tr>
<tr>
<td>60</td>
<td>(6.6 \times 10^9)</td>
<td>(1.0 \times 10^{10})</td>
<td>(4.4 \times 10^6)</td>
<td>(1.9 \times 10^7)</td>
<td>(1.2 \times 10^7)</td>
</tr>
<tr>
<td>55</td>
<td>(8.5 \times 10^9)</td>
<td>(3.2 \times 10^{10})</td>
<td>(3.3 \times 10^6)</td>
<td>(2.8 \times 10^7)</td>
<td>(1.6 \times 10^7)</td>
</tr>
<tr>
<td>50</td>
<td>(6.5 \times 10^9)</td>
<td>(1.0 \times 10^{11})</td>
<td>(1.2 \times 10^6)</td>
<td>(4.4 \times 10^7)</td>
<td>(2.8 \times 10^7)</td>
</tr>
</tbody>
</table>
REFERENCES

Crutzen P. J., "Determination of parameters appearing in the 'dry' and the 'wet' photochemical theories for ozone in the stratosphere," Tellus, 21, 368, 1969.

NOXON J. F., "Optical emission from O(1D) and O₂(b¹Σ⁺) in ultraviolet photolysis of O₂ and CO₂," J. Chem. Phys., 52, 1852, 1970.

STUHL F. and WELGE K. H., "Deactivation of O(3S) and O₂(b¹Σ⁺)," Canadian J. Chem., 47, 1870, 1969.

