Nitrogen oxides in the chemosphere

by M. NICOLET
FOREWORD

The preparation of space experiments as well as the recent observations at the Jet Propulsion Laboratory, require a detailed analysis of the chemical processes in which nitrogen oxides are involved. "Nitrogen oxides in the chemosphere" is the result of a thoroughly research on that problem which has already been studied before. This paper will be published during 1965 in the Aeronomical and Planetary Sciences section of The Journal of Geophysical Research, USA.

M. Nicolet.

AVANT-PROPOS

La préparation d'expériences spatiales en même temps que les récentes observations du Jet Propulsion Laboratory, requièrent une analyse détaillée des processus chimiques où interviennent les oxydes d'azote. "Nitrogen oxides in the chemosphere" est le résultat d'une recherche très approfondie de ce problème qui avait déjà été l'objet d'études antérieures. Ce travail paraîtra dans la section : Aéronomie et sciences planétaires du Journal of Geophysical Research, USA, au cours de l'année 1965.

M. Nicolet.
VOORWOORD

De voorbereiding van ruimteproefnemingen, terzelfertijd als de jongste waarnemingen van het Jet Propulsion Laboratory vereisen een uitgediepte ontleding van de scheikundige reakties in dewelke de stikstofoxyden tussenkomen. "Nitrogen oxides in the Chemosphere" is het resultaat van een zeer diepe studie van dit probleem, dat reeds vroeger het voorwerp van studies was geweest. Dit werk zal in de loop van het jaar 1965 verschijnen in de afdeling : Aeronomie en planetarische wetenschappen van de Journal of Geophysical Research, USA.

M. Nicolet.

VORWORT

M. Nicolet.
ABSTRACT

A study is made of the various reactions in which nitrogen oxides are involved in the chemosphere. The hydrogen compounds do not play an important role, and it is found that the essential aeronomic reactions depend on ozone and atomic oxygen. Thus, the ratio nitrogen dioxide-nitric oxide can be determined. The absolute values of the NO₂ and NO concentrations depend on the dissociation of molecular nitrogen in the chemosphere. The chemical conditions cannot be applied in the mesosphere since the life-time of NO is relatively long, and a downward transport is involved. Very special assumptions concerning chemical reactions would be necessary to reconcile the photochemical picture and the observational results. The introduction of ionic reactions, considered in an accompanying paper, will lead to a correct interpretation.
I.- INTRODUCTION

The subject of nitrogen oxides was introduced [Nicolet, 1945] in aeronomic studies of nitric oxide in its consideration as an important ionic constituent of the ionospheric D region. The photochemistry of nitrogen was first studied by Bates [1952] and has been further studied by Bates [1954] and Nicolet [1954]. This problem, which is much more complicated than that of the photochemistry of oxygen, was developed by Nicolet [1955] in relation with the airglow. Calculations are difficult because the chemical aeronomy of nitrogen in an oxygen atmosphere leads to a complex problem as recently discussed by Nicolet [1960] and Barth [1961]. The presence of important concentrations of nitric oxide ions requires a special analysis of ionic reactions related to the presence or absence of the neutral molecule. Our experimental knowledge concerning rate coefficients is not yet complete, but has increased rapidly, however, in recent years and a systematic account can be found in several review papers: Three body reactions by Barth [1964], reactions involving nitrogen and oxygen by Schiff [1964] and aeronomic reactions involving hydrogen by Kaufman [1964].

Attention here will be confined to the photochemistry of nitrogen. An attempt will be made in another paper to cover the subject of related ionic reactions which modify the photochemical picture and add greatly to the significance of the occurrence of atomic nitrogen and its oxides in the ionosphere.

2.- NITROGEN DIOXIDE AND NITRIC OXIDE RATIOS BELOW 100 KM.

If nitrogen dissociation is operative at sufficiently low altitudes, the formation of nitric oxide may be due to a three-body process

\[N + O + M \rightarrow NO + M + 150 \text{ kcal} \] (1)

for which the rate coefficient \(b_{1a} \) is not yet known with sufficient precision.
Calculations will be made with the following recombination rate

\[b_{1\alpha} = (1 \pm 0.5) \times 10^{-32} \, n(M) \, \text{cm}^3 \text{sec}^{-1}. \]

Three-body recombination of nitrogen and oxygen atoms leads to the emission of various electronic bands of nitric oxide [Barth et al., 1959].

A pre-association process such as [Young and Sharpless, 1963; Callear and Smith, 1964]

\[N(^4S) + O(^3P) \rightarrow NO(^4\Pi) \rightarrow NO(C^2\Pi) \]

followed by

\[NO(C^2\Pi) \rightarrow NO(X^2\Pi) + \gamma \text{ bands}; \quad A_{21} = 1.5 \times 10^7 \, \text{sec}^{-1} \]

and

\[NO(C^2\Pi) \rightarrow N(^4S) + O(^3P); \quad a_{21} = 3.5 \times 10^8 \, \text{sec}^{-1} \]

results in nitric oxide formation with a rate coefficient, \(b_{1b} \),

\[b_{1b} = 1 \times 10^{-17} \, \text{cm}^3 \text{sec}^{-1} \]

which is more effective than (2) where \(n(M) \) is less than \(10^{15} \, \text{cm}^{-3} \).

The chemiluminescent production of the \(\beta, \gamma \) and \(\delta \) bands which was investigated by Young and Sharpless [1963] leads to the following absolute rates of the emission processes

\[\beta \text{ bands: } 2.4 \times 10^{-34} \, n(M) \, n(O) \, n(N) \, \text{cm}^{-3} \text{sec}^{-1} \]

\[\gamma \text{ bands: } 8.2 \times 10^{-18} \, n(N) \, n(O) + 2.4 \times 10^{-35} \, n(M) \, n(O) \, n(N) \, \text{cm}^{-3} \text{sec}^{-1} \]

measured at 4 mm Hg.

Before considering other nitric oxide formation processes, it is necessary to simplify the study of nitric oxide by analysing its reactions with atomic oxygen and ozone, which are the principal active constituents.
in the chemosphere. First, there is the following three-body process

$$0 + NO + M \rightarrow NO_2 + M + 72 \text{ kcal}$$

(6)

The reaction has a relatively high rate coefficient \([\text{Kaufman, 1958; Ogryzlo and Schiff, 1959; Clyne and Thrush, 1962c; Schiff, 1964; Reeves et al., 1964}]\) with a negative activation energy of about 1.8 \pm 0.4 kcal according to Clyne and Thrush [1962 c] or 1.93 \pm 0.1 kcal according to Klein and Herron [1964]. The following rate coefficient for (6) is adopted

$$b_{2a} = 3 \times 10^{-33} e^{1000/T} n(M) \text{ cm}^3 \text{ sec}^{-1}$$

(7)

This three-body process leading to the formation of nitrogen dioxide must be compared with the radiative process [Bates, 1954; Nicolet, 1960]

$$0 + NO \rightarrow NO_2 + h\nu (\lambda > 3975 \text{ A})$$

(8)

which should be a three-body mechanism according to various laboratory measurements. The measured rate coefficient \((\lambda \sim 3875 \text{ A} - 1.4 \mu)\) is [Fontijn et al., 1964]

$$b_{2b} = 6.4 \times 10^{-17} \text{ cm}^3 \text{ sec}^{-1} (\pm 30 \%)$$

(9)

For \(\lambda < 7250 \text{ A}\), we consider the following value :

$$b_{2b} = 3.2 \times 10^{-17} \text{ cm}^3 \text{ sec}^{-1}$$

(10)

Since the probability of emission is not less than 4 \times 10^6 \text{ sec}^{-1}, we adopt the rate coefficient given by (9) at all altitudes [Levitt, 1962; Schiff, 1964; Doherty and Jonathan, 1964; Reeves et al., 1964].

Two bimolecular processes must be considered as important aeronomic reactions. One is a reaction with oxygen atoms
\[0 + \text{NO}_2 \rightarrow \text{NO} + \text{O}_2 + 46 \text{ kcal.} \]

(11)

This is known to be rapid [Ford and Endow, 1957; Phillips and Schiff, 1962 a; Schiff, 1964; Klein and Herron, 1964]. The \(\text{O}_2 \) molecules formed in (11) are vibrationally excited [Basco and Norrish, 1960; Phillips and Schiff, 1962 c] to \(v' = 8 \) (33.7 kcal) and perhaps electronically excited to \(^1\Sigma_g^+ (v' : 2) \) with energies between 37.5 and 45.5 kcal corresponding to \(9 \leq v'' \leq 11 \). We adopt for (11) the rate coefficient

\[b_3 = 1.5 \times 10^{-12} T^{1/2} e^{-500/T} \text{ cm}^3 \text{ sec}^{-1}. \]

(12)

The other reaction of nitric oxide with ozone [Johnston and Crosby, 1954] leads to ground state \(\text{NO}_2 \) molecules

\[\text{O}_3 + \text{NO} \rightarrow \text{NO}_2 + \text{O}_2 + 48 \text{ kcal} \]

(13)

with a rate coefficient [Johnston and Crosby, 1954; Phillips and Schiff, 1962a]

\[b_4 = 5 \times 10^{-14} T^{1/2} e^{-1200/T} \text{ cm}^3 \text{ sec}^{-1}. \]

(14)

A chemiluminescent radiation [Greaves and Garvin, 1959] in the red and infrared \((\lambda \geq 5900 \text{ A}) \) is emitted during reaction (13). It corresponds to an electronically excited state with a rate coefficient [Clyne et al., 1964].

\[b_{4a} = 5 \times 10^{-14} T^{1/2} e^{-2100/T} \text{ cm}^3 \text{ sec}^{-1} \]

(14a)

In addition to these processes involving \(\text{NO}_2 \), the following photodissociation process occurs in a sunlit atmosphere

\[\text{NO}_2 + h\nu (\lambda < 3975) \rightarrow \text{NO} + \text{O} \]

(15)

with the average photodissociation coefficient [Bates, 1954; Leighton, 1961]
Under laboratory conditions the photolysis of nitrogen dioxide must involve an analysis [Ford, 1960] of NO_3, N_2O_5, etc. However, if a reaction such as $\text{O}_3 + \text{NO} \rightarrow \text{NO}_3 + \text{O}_2$ has an activation energy of the order of 7 kcal, NO_2 will be unaffected during the night. For daytime conditions, excluding NO_3 which has a dissociation energy of only 50 kcal, aeronomic conditions essentially correspond to the $\text{NO} - \text{NO}_2$ system.

Neglecting reactions in which hydrogen and nitrogen atoms are involved, the differential equation related to NO_2 is written as

$$\frac{dn(\text{NO}_2)}{dt} + \left[b_3 n(0) + J_{\text{NO}_2}\right] n(\text{NO}_2) = \left[b_2 n(0) + b_4 n(\text{O}_3)\right] n(\text{NO})$$

where $b_2 = b_2a n(M) + b_2b$.

For daytime conditions, an equilibrium exists since $\tau_{\text{NO}_2} < 200$ sec, and

$$\frac{n(\text{NO}_2)}{n(\text{NO})} = \frac{[b_2a n(M) + b_2b] n(0) + b_4 n(\text{O}_3)}{J_{\text{NO}_2} + b_3 n(0)}$$

Fig. 1 is an illustration of the vertical distribution of the ratio $n(\text{NO}_2)/n(\text{NO})$ which shows that, above the stratopause, nitrogen dioxide may be neglected in the analysis of nitric oxide reactions.

After twilight, when atomic oxygen is rapidly removed in the stratosphere by its association with molecular oxygen, the major process is, according to (17),

$$\frac{dn(\text{NO}_2)}{dt} = - \frac{dn(\text{NO})}{dt} = b_4 n(\text{O}_3) n(\text{NO}).$$

The life-time of NO is very short during the night in the stratosphere since $b_4 n(\text{O}_3) > 3 \times 10^{-4}$ sec$^{-1}$ (see Fig. 1). In other words, nitric oxide disappears during dark hours in atmospheric regions where ozone is present in sufficient abundance.
Fig. 1. Vertical distribution of the nitrogen dioxide and nitric oxide ratio for night and daytime equilibrium conditions. Note the action of atomic oxygen, $b_3 n(0)$, and ozone, $b_4 n(O_3)$.
In the upper mesosphere and thermosphere where $n(0)$ does not vary appreciably, the differential equation (17) with $J_{NO_2} = 0$ and $b_{3} n(0) > b_{4} n(O_{3})$ indicates that the ratio $n(NO_2)/n(NO)$ increases after sunset as follows:

$$\frac{n(NO_2)}{n(NO)} = \frac{b_{2}}{b_{3}} \left[1 - e^{-b_{3} n(0)t} \right]$$

Night-time equilibrium conditions are reached very rapidly in the thermosphere but do not differ from daytime conditions (see Fig. 1). The curves of Fig. 1 show that the ratio $n(NO_2)/n(NO)$ shows the greatest change in the middle mesosphere where it depends on the rapidly varying concentrations of O_{3} and O after sunset.

Finally, in the stratosphere below 30 km where the photoaction plays a role the ratio $n(NO_2)/n(NO)$ increases and may correspond to a greater NO_2 concentration than that of NO, depending on the O_{3} concentration.

3.- NITRIC OXIDE AND ATOMIC NITROGEN.

In order to determine the behavior of nitric oxide, it is necessary to examine aeronomic reactions in which atomic nitrogen is effectively involved. In addition to (1) and (3), nitrogen atoms can react with nitrogen dioxide [Kistiakowsky and Volpi, 1957; Harteck and Dondes, 1958; Kaufman and Kelso, 1959; Verbeke and Winkler, 1960; Clyne and Thrush, 1961d]

$$N + NO_2 \rightarrow O + N_2O + 34 \text{kcal} \quad (21a)$$
$$\rightarrow NO + NO + 78 \text{kcal} \quad (21b)$$
$$\rightarrow N_2 + O_2 + 121 \text{kcal} \quad (21c)$$

for which a rate coefficient, b_{5}, may be of the same order as for the other bimolecular reactions. However, while the reaction of atomic oxygen with nitrogen dioxide is more important in the aeronomic ratio $n(NO_2)/n(NO)$, the reactions of atomic nitrogen with nitric oxide and molecular oxygen...
are certainly the principal reactions in the chemosphere.

The following reaction [Kistiakowsky and Volpi, 1957; Verbeke and Winkler, 1960; Herron, 1961; Clyne and Thrush, 1961a; Phillips and Schiff, 1962b]

\[
N + NO \rightarrow N_2 + O + 75 \text{ kcal} \tag{22}
\]

has a very small activation energy. We adopt the rate coefficient

\[
b_6 = (1.5 \pm 0.5) \times 10^{-12} T^{1/2} \text{ cm}^3 \text{ sec}^{-1} \tag{23}
\]

which varies by about a factor of 2 between 200°K and 700°K. The fact that vibrational excitation [Phillips and Schiff, 1962b] of \(N_2 (v \leq 12)\) occurs in reaction (22) and may lead to a decomposition of ozone, is of no practical aeronomic consequence. It can be shown that reaction (22) is not important in the stratosphere and lower mesosphere where atomic nitrogen does not exist. Such a reaction is, however, the most important nitrogen recombination process in the thermosphere.

The reaction of atomic nitrogen with molecular oxygen produces nitric oxide

\[
N + O_2 \rightarrow NO + O + 32 \text{ kcal} \tag{24}
\]

with a maximum vibrational NO(v = 6) excitation, and requires a relatively high activation energy [Kistiakowsky and Volpi, 1957; Kaufman and Decker, 1959; Clyne and Thrush, 1961a, Mavroyannis and Winkler, 1961b] between 6 and 7 kcal. Laboratory determinations of the rate coefficient \(b_7\) of (24) are fitted between 400°K and 1500°K by the expression

\[
b_7 = 2 \times 10^{-13} T^{1/2} e^{-3000/T} \text{ cm}^3 \text{ sec}^{-1} \tag{25}
\]

which is adopted for the whole chemosphere. Such a rate coefficient is small at low mesospheric temperatures; nevertheless, it leads to an aeronomic production rate of NO molecules of about \(10^{-5}\) sec\(^{-1}\) per nitrogen atom at the mesopause level and to about \(10^{-3}\) sec\(^{-1}\) in the thermosphere.
Production of nitric oxide in the laboratory may also result from the reaction of nitrogen atoms with ozone [Chen and Taylor, 1961; Phillips and Schiff, 1962a],

\[N + O_3 \rightarrow NO + O_2 + 126 \text{ kcal.} \]

(26)

We adopt the following rate coefficient

\[b_8 = 2 \times 10^{-12} \frac{1}{T} e^{-1200/T} \text{ cm sec}^{-1}. \]

(27)

This reaction would have an aeronomic role (only in the mesosphere) if nitrogen atoms were present in sufficient numbers. In fact, this reaction can be neglected since the concentration of atomic nitrogen is small compared to that of atomic oxygen.

In addition to the loss process (22) of nitric oxide occurring under day and night-time conditions, it is necessary to add the following photo-dissociation process

\[NO + hv (\lambda \sim 1900 \text{ A}) \rightarrow N + O \]

(28)

for which Bates [1954] has adopted a rate coefficient at zero optical depth

\[J_{NO} = 10^{-7} \text{ sec}^{-1}. \]

Furthermore, the photoionisation of NO by Lyman-alpha followed by dissociative recombination is also a loss process

\[NO + hv (\lambda = 1216 \text{ A}) \rightarrow NO^+ + e \rightarrow N + O. \]

(29)

An average value of about 4 ergs cm\(^{-2}\) sec\(^{-1}\) for solar Ly-\(\alpha\) leads to a rate coefficient at zero optical depth of

\[I_{NO} = 5 \times 10^{-7} \text{ sec}^{-1}. \]

(30)
Under equilibrium conditions between nitrogen dioxide and nitric oxide, the rate of change of \(n(\text{NO}) \) is given by the following equation

\[
\frac{dn(\text{NO})}{dt} + n(\text{NO}) \left[I_{\text{NO}} + J_{\text{NO}} + b_6 n(\text{N}) \right] = [b_1 n(\text{O}) + b_7 n(\text{O}_2)] n(\text{N}) \tag{31}
\]

Hence, writing \(\frac{dn(\text{NO})}{dt} = 0 \) in (31), the ratio \(\frac{n(\text{NO})}{n(\text{N})} \) is given by

\[
\frac{n(\text{NO})}{n(\text{N})} = \frac{b_1 n(\text{O}) + b_7 n(\text{O}_2)}{I_{\text{NO}} + J_{\text{NO}} + b_6 n(\text{N})} \tag{32}
\]

In this formula, \(b_6 n(\text{N}) \) is the important term in the denominator if \(n(\text{N}) > 5 \times 10^6 \text{ cm}^{-3} \). Ignoring \(I_{\text{NO}} \) and \(J_{\text{NO}} \), the equilibrium value of nitric oxide \(n^*(\text{NO}) \) is then

\[
n^*(\text{NO}) = 10^{-1} e^{-3000/T} n(\text{O}_2) + 5 \times 10^{-7} n(\text{O}). \tag{33}
\]

The second term on the right is small compared to the first in the mesosphere as well as where the temperature is high in the thermosphere. It becomes important at the atomic oxygen density peak which occurs in the lower thermosphere. A concentration of oxygen atoms of the order of \(2 \times 10^{12} \text{ cm}^{-3} \) leads to

\[
n^*(\text{NO}) = 10^6 \text{ cm}^{-3}. \tag{34}
\]

At the mesopause level with \(T = 190^\circ \text{K} \), equation (33) leads to

\[
n^*(\text{NO}) = 6 \times 10^5 \text{ cm}^{-3} \tag{35}
\]

i.e. about \(3 \times 10^{-9} \) of the total concentration.

The time to reach an equilibrium according to (31) depends on the term \(b_6 n(\text{N}) \) and, if \(n(\text{N}) > n(\text{NO}) \), all conditions are required to reach a perfect chemical equilibrium. At the mesopause level, an atomic nitrogen concentration of at least of \(10^6 \text{ cm}^{-3} \) is required to apply strictly equilibrium conditions, which can be attained in less than one day. Consequently,
the production of nitrogen atoms must be studied near the mesopause level before deducing the aeronomic behaviour of nitric oxide.

If we write \(I_{NO} + J_{NO} > b_6 n(N) \), so that (32) becomes

\[
\frac{n(NO)}{n(N)} = \frac{b_7 n(O_2)}{I_{NO} + J_{NO}}, \tag{36}
\]

which is applicable to mesospheric conditions, we obtain a ratio \(n(NO)/n(N) \) greater than unity and increasing downwards.

4. - ATOMIC NITROGEN IN THE CHEMOSPHERE

Using the set of reactions written above, the equation governing the rate of change of atomic nitrogen is

\[
\frac{dn(N)}{dt} + n(N)[b_1 n(O) + b_6 n(NO) + b_7 n(O_2)] = n(NO) [J_{NO} + I_{NO}] + 2P(N) \tag{37}
\]

in which the last term on the right takes into account the various possibilities of atomic nitrogen production.

In the chemosphere, only the following predissociation process, considered by Herzberg [1948], can be introduced

\[
N_2 + h\nu (\lambda \lambda \sim 1200 \text{ to } 1250 \text{ A}) \rightarrow N_2 (a^1\Pi_g) \rightarrow N + N \tag{38}
\]

in which Lyman-Birge-Hopfield bands are involved; namely (7-0) at 1250 A, (8-0) at 1226 A and (9-0) at 1205 A. The most penetrating radiation corresponds to 1226 A for which the absorption cross-section should be of the order of \(5 \times 10^{-19} \text{ cm}^2 \). According to Bates [1954] an approximate value of the dissociation rate coefficient at zero optical depth should be about

\[
J_{N_2} = 10^{-12} \text{ sec}^{-1} \tag{39}
\]
By adding (31) and (37), we obtain the proper expression for photochemical changes

\[
\frac{1}{2} \frac{d[n(NO) + n(N)]}{dt} + b_6 n(NO) n(N) = n(N_2) J_{N_2} \tag{40}
\]

or for equilibrium conditions

\[
b_6 n(NO) n(N) = n(N_2) J_{N_2} \tag{41}
\]

For example, a round figure of \(n(NO) \) being \(10^6 \text{ cm}^{-3} \text{ sec}^{-1} \) near 100 km leads to \(n(N) \approx 10^6 \text{ cm}^{-3} \).

If we adopt the relations

\[
n^*(NO) = \frac{b_1 n(O) + b_7 n(O_2)}{b_6} \tag{42}
\]

and

\[
n^*(N_2) = \frac{P(N)}{b_1 n(O) + b_7 n(O_2)} \tag{43}
\]

for the solutions of (41), the actual value of \(n(NO) \) is

\[
n(NO) = n^*(NO) / [1 + 10^5 / n^*(N)]^{1/2} \tag{44}
\]

At the mesopause level, the term \(b_7 n(O_2) \) is about \(10^{-5} \text{ sec}^{-1} \) and any production of nitrogen atoms greater than 1 atom \(\text{cm}^{-3} \text{ sec}^{-1} \) leads to a stationary value for \(n(NO) \), which is practically the equilibrium value \(n^*(NO) \).

In the mesosphere, the loss of nitrogen atoms increases rapidly with decreasing height and equilibrium conditions can always be applied to atomic nitrogen. Thus, we have, for the change of \(n(NO) \) in the mesosphere, assuming that only chemical changes occur,
\[
\frac{dn(\text{NO})}{dt} + 2b_6 n^2(\text{NO}) \left(\frac{I_{\text{NO}} + J_{\text{NO}}}{b_7 n(\text{O}_2) + b_6 n(\text{NO})} \right) = 2P(\text{N}) \left[\frac{b_7 n(\text{O}_2) - b_6 n(\text{NO})}{b_7 n(\text{O}_2) + b_6 n(\text{NO})} \right]
\]

Since \(b_7 n(\text{O}_2) \) must be greater than \(b_6 n(\text{NO}) \), according to (42) and (44), the following approximation

\[
- \frac{dn(\text{NO})}{dt} = 2b_6 \frac{I_{\text{NO}} + J_{\text{NO}}}{b_7 n(\text{O}_2)} n^2(\text{NO})
\]

leads, by integration, to an approximate life-time of nitric oxide in the mesosphere and lower atmospheric regions. The time \(\tau_{\text{NO}} \) necessary to reduce the concentration \(n(\text{NO}) \) to 50 percent of its initial value \(n_0(\text{NO}) \) is

\[
\tau_{\text{NO}} = 10^6 \frac{n^*(\text{NO})}{n_0(\text{NO})} \text{ sec}
\]

which is at least 10 days for any concentration less than the photochemical value defined by (42). Since \(n^*(\text{NO}) \) is certainly greater than the actual value \(n(\text{NO}) \) in the lower mesosphere, the possibility of maintaining nitric oxide in the mesosphere is real.

A photochemical value of \(n(\text{NO}) = 3 \times 10^{-9} n(\text{M}) \) at the mesopause with its extrapolation into the mesosphere, stratosphere and troposphere leads to an acceptable concentration of nitrogen oxide at ground level [Hutchinson, 1954]. Considering the various ratios of \(n(\text{NO}_2)/n(\text{NO}) \), as obtained by (18) and (20) and shown in Fig. 1, it is possible to illustrate the vertical distributions of \(n(\text{NO}) \) and \(n(\text{NO}_2) \). Fig. 2 and Fig. 3 show the variation in the stratosphere and mesosphere, respectively. Nitrogen dioxide and nitric oxide are of equal importance in the middle stratosphere around 30 km and, during the night, NO disappears by its transformation into NO\(_2\). In the mesosphere there is a large variation between day and night.
Fig. 2.- Vertical distribution of nitric oxide and nitrogen dioxide in the stratosphere for day and night-time conditions assuming a ratio \([n(\text{NO}) + n(\text{NO}_2)]/n(M) = 3 \times 10^{-9}\).
Fig. 3.- Vertical distribution of nitric oxide and nitrogen dioxide in the mesosphere for chemical conditions without introducing the effect of ionospheric reactions. \(n(NO)/n(M) = 3 \times 10^{-9} \).
There is, furthermore, a transition zone corresponding to the region where atomic oxygen recombines after sunset. Above the mesopause, NO again increases and reaches a concentration in the E layer of about 10^6 cm$^{-3}$. Nevertheless, ionic reactions must be introduced in the ionosphere and the numerical values given cannot be considered as real in the ionospheric regions. Such conditions will be discussed after an analysis of the ionization processes.

5.- NITROGEN TRIOXIDE, TETROXIDE AND PENTOXIDE

In the ozonosphere, the following reaction

$$ \text{O}_3 + \text{NO}_2 \rightarrow \text{NO}_3 + \text{O}_2 + 26 \text{ kcal} \quad (48) $$

may occur. It has been studied in the laboratory [Johnston and Yost, 1949; Ford et al., 1957; Husain and Norrish, 1963]. However, its activation energy (about 7 kcal) leads to a low rate coefficient, b_9, in the stratosphere,

$$ b_9 = 5 \times 10^{-13} T^{1/2} e^{-3600/T} \quad (49) $$

Also the three-body reaction

$$ \text{O} + \text{NO}_2 + \text{M} \rightarrow \text{NO}_3 + \text{M} + 50 \text{ kcal} \quad (50) $$

may occur in the region where atomic oxygen is present. Its rate coefficient, b_{10}, is higher [Ford and Endow, 1957] than ordinary three-body reactions and may be about

$$ b_{10} = 5 \times 10^{-31} \text{ cm}^6 \text{ sec}^{-1} \quad (51) $$

For day-time conditions such reactions are followed by the rapid reaction

$$ \text{NO} + \text{NO}_3 \rightarrow 2\text{NO}_2 + 22 \text{ kcal} \quad (52) $$
which has a very small activation energy and may have a rate coefficient, b_{11}, of about

$$b_{11} = 5 \times 10^{-13} \frac{T^{\frac{1}{2}}}{e^{-1000/T}} \quad (53)$$

The presence of NO$_3$ may, therefore, be neglected in a sunlit atmosphere due to the presence of NO and also to a photodissociation process since there is an absorption spectrum in the visible region [Jones and Wulf, 1937; Husain and Norrish, 1963]. The night-time conditions are different in the stratosphere due to the absence of nitric oxide. The following processes [Ford, 1960; Benson, 1960; Leighton, 1961] may be considered:

$$\text{NO}_3 + \text{NO}_2 \rightarrow \text{N}_2\text{O}_5 + 21 \text{ kcal} \quad (54)$$

$$\text{NO}_3 + \text{NO}_2 \rightarrow \text{NO} + \text{NO}_2 + \text{O}_2 - 4 \text{ kcal} \quad (55)$$

$$\text{NO}_3 + \text{NO}_3 \rightarrow 2 \text{NO}_2 + \text{O}_2 + 18 \text{ kcal} \quad (56)$$

for which the following, very approximate, rate coefficients are adopted, respectively:

$$b_{12} = 5 \times 10^{-12} \frac{T^{\frac{1}{2}}}{e^{-1000/T}} \quad (57)$$

$$b_{13} = 3 \times 10^{-14} \frac{T^{\frac{1}{2}}}{e^{-2000/T}} \quad (58)$$

$$b_{14} = 1.5 \times 10^{-13} \frac{T^{\frac{1}{2}}}{e^{-3600/T}} \quad (59)$$

Reactions (48) and (54) will result in an NO$_2$ loss process for night-time conditions. Since the rate coefficient of (48) decreases from about 1.7×10^{-17} cm3 sec$^{-1}$ at the stratopause to 1.7×10^{-18} near 30 km, the production of nitrogen trioxide is very small during a night of twelve hours. As a result the nitrogen dioxide is not affected and the production of nitrogen pentoxide is relatively small for normal night-time
conditions. Nevertheless, the problem of nitrogen trioxide and pentoxide cannot be neglected during long nights. The three-body association leading to nitrogen tetroxide should be considered for night-time conditions:

\[
\text{NO}_2 + \text{NO}_2 + \text{M} \rightarrow \text{N}_2\text{O}_4 + \text{M} + 15 \text{ kcal} \tag{60}
\]

for which the rate coefficient, \(b_{15} \), is small [Clyne and Thrush, 1962a]

\[
b_{15} = 8 \times 10^{-34} \text{ cm}^6 \text{ sec}^{-1}. \tag{61}
\]

The effect of (60) must be considered at low altitudes for night-time conditions.

Thus, the reactions involving nitrogen dioxide (and ozone), (48) and (60), which occur during night-time conditions may contribute somewhat to a temporary disappearance of nitrogen oxide in the stratosphere and below.

6.- NITROXYL, NITROUS ACID AND NITRIC ACID.

The formation of nitroxyl and its loss are due to a catalytic action of nitric oxide or atomic hydrogen. Such a process may be considered in the mesosphere and lower thermosphere where H and NO are present.

The three-body process

\[
\text{H} + \text{NO} + \text{M} \rightarrow \text{HNO} + \text{M} + 49 \text{ kcal} \tag{62}
\]

has been the subject of recent laboratory studies since an infrared spectrum was detected [Cashion and Polanyi, 1959]. Absorption and emission bands [Dalby, 1958; Clement and Ramsay, 1961; Bancroft et al., 1962] have been analyzed and detailed investigations of process (62) were carried out by various authors [Clyne and Thrush, 1961b and 1962b; Strausz and Grunning, 1964; Bulewicz and Sugden, 1964]. Considering that (62) has a negative activation
energy [Clyne and Thrush, 1961b], the following rate coefficient, b_{16}, is used

$$b_{16} = 1 \times 10^{-32} e^{300/T} n(NO) \text{ cm}^3 \text{ sec}^{-1}.$$ (63)

The chemiluminescent reaction involving $H + NO$, namely

$$H + NO \rightarrow HNO + hv \quad (\lambda \lambda 7625 - 6925 - 7965 - 6272),$$ (64)

is slow [Clyne and Thrush, 1962b]. The rate coefficient is about

$$b_{16a} = 7 \times 10^{-19} \left(\frac{273}{T}\right) \text{ cm}^3 \text{ sec}^{-1}.$$ (65)

and process (64) is, therefore, unimportant in aeronomy.

The catalytic action of nitric oxide occurs in the recombination of hydrogen atoms; the bimolecular process [Clyne and Thrush, 1962b; Bulewicz and Sugden, 1964]

$$H + HNO \rightarrow NO + H_2 + 55 \text{ kcal}$$ (66)

having a small activation energy, has a rate coefficient, b_{17}, of the order of

$$b_{17} = 5 \times 10^{-13} \frac{1}{T^{\frac{3}{2}}} e^{-1200/T}.$$ (67)

In a hydrogen-oxygen atmosphere, the action of OH and HO$_2$ must also be considered; the catalytic action of NO leads to

$$OH + HNO \rightarrow NO + H_2O + 69 \text{ kcal}$$ (68)

which has a larger rate coefficient [Bulewicz and Sugden, 1964] at flame temperature than reaction (66). We adopt the following value
The reaction

\[\text{HO}_2 + \text{HNO} \rightarrow \text{NO} + \text{H}_2\text{O}_2 + 40 \text{ kcal} \]

(70)

should also occur, but its rate coefficient, \(b_{20} \), is not known. We consider that

\[b_{17} \leq b_{20} \leq b_{18}. \]

(71)

The net result of reactions (62) to (70) is that nitric oxide is not affected. Atomic hydrogen is subject to other more important loss processes and its chemiluminescent reaction in the formation of nitroxyl is not important.

The possible three-body associations leading to nitrous and nitric acids:

\[\text{NO}_2 + \text{H} + \text{M} \rightarrow \text{HNO}_2 + \text{M} + 80 \text{ kcal} \]

(72)

\[\text{NO} + \text{OH} + \text{M} \rightarrow \text{HNO}_2 + \text{M} + 60 \text{ kcal} \]

(73)

\[\text{NO}_2 + \text{OH} + \text{M} \rightarrow \text{HNO}_3 + \text{M} + 53 \text{ kcal} \]

(74)

and \[\text{NO} + \text{HO}_2 + \text{M} \rightarrow \text{HNO}_3 + \text{M} + 63 \text{ kcal} \]

(75)

with the, respective, rate coefficients \(b_{20}, b_{21}, b_{22} \) and \(b_{23} \) (which are not known) should be compared with the reactions
\[\text{HNO}_2 + \text{H} \rightarrow \text{H}_2 + \text{NO}_2 + 23 \text{ kcal} \]
\[\text{(76)} \]

\[\text{HNO}_2 + \text{OH} \rightarrow \text{H}_2\text{O} + \text{NO}_2 + 38 \text{ kcal} \]
\[\text{(77)} \]

\[\text{HNO}_3 + \text{H} \rightarrow \text{H}_2\text{O} + \text{NO}_2 + 66 \text{ kcal} \]
\[\text{(78)} \]

and
\[\text{HNO}_3 + \text{H} \rightarrow \text{H}_2\text{O} + \text{NO}_3 + 15 \text{ kcal} \]
\[\text{(79)} \]

which are exothermic reactions for which the activation energies likewise are not known. Their respective rate coefficients \(b_{24}, b_{25}, b_{26} \) and \(b_{27} \) should be very small if \text{HNO}_2 \text{ and HNO}_3 have some importance. In any case, \text{NO}_2 has a catalytic action and the nitrogen oxides are not affected by reactions (72) to (79). The loss processes of \text{H}, \text{OH} \text{ and } \text{H}_2\text{O} \text{ are not important compared with other processes in which } \text{O}, \text{O}_2 \text{ and } \text{O}_3 \text{ are involved.}

Finally, three other reactions in which nitrogen oxides are involved must be considered. The presence of \text{NO}_2 leads to a very rapid process [Rosser and Wise, 1961; Clyne and Thrush, 1961c; Ashmore and Tyler, 1962; Phillips and Schiff, 1962d; Kaufman, 1964] with practically no activation energy

\[\text{H} + \text{NO}_2 \rightarrow \text{NO} + \text{OH} + 30 \text{ kcal} \]
\[\text{(80)} \]

with

\[b_{28} = 2 \times 10^{-12} T^{1/2} \]
\[\text{(81)} \]

which corresponds to laboratory measurements [Phillips and Schiff, 1962d]. Such a reaction is, however, less important than the reaction \(\text{H} + \text{O}_3 \rightarrow \text{OH} + \text{O}_2 \) since \(n(\text{O}_3) > n(\text{NO}_2) \). The role of (80) as an \text{NO}_2 loss process is also limited since \(\text{O} + \text{NO}_2 \rightarrow \text{NO} + \text{O}_2 \) is the principal reaction.

The effect of \text{NO} on \text{H}_2\text{O} and \text{H}_2\text{O}_2 is given by the following reaction
\[\text{NO} + \text{HO}_2 \rightarrow \text{OH} + \text{NO}_2 + 9 \text{ kcal} \quad (82) \]

which is fast relative to other reactions of \(\text{HO}_2 \) in similar circumstances [Tyler, 1962]. If an upper limit of about 2.5 kcal is assumed for the activation energy of a reaction such as \(\text{O}_3 + \text{NO} \rightarrow \text{O}_2 + \text{NO}_2 \) with a rather high pre-experimental factor, a rate coefficient, \(b_{29} \), of about \(10^{-11} \text{ cm}^3 \text{ sec}^{-1} \) at 500°K leads to

\[
b_{29} = 5 \times 10^{-12} T^{1/2} e^{-1200/T}. \quad (83)\]

Under aeronomic conditions, such a reaction must be compared with the rapid reaction \(\text{HO}_2 + \text{O} \rightarrow \text{OH} + \text{O}_2 \) or with \(\text{NO} + \text{O}_3 \) and \(\text{NO} + \text{O} \). Its aeronomic role is, therefore, not important. The reaction

\[\text{NO} + \text{H}_2\text{O}_2 \rightarrow \text{HNO}_2 + \text{OH} + 11 \text{ kcal}, \quad (84) \]

for which the rate coefficient \(b_{30} \) is not known may also be neglected since \(\text{O} + \text{H}_2\text{O}_2 \rightarrow \text{H}_2\text{O} + \text{O}_2 \) has the leading role as a loss process of hydrogen peroxide under aeronomic conditions.

7. SUMMARY

The essential reactions in which nitrogen oxides are involved in the chemosphere depends on atomic oxygen and ozone. The hydrogen compounds do not play an important role, and all their reactions with NO and \(\text{NO}_2 \) may be neglected. The processes affecting the ratio \(n(\text{NO}_2)/n(\text{NO}) \) are essentially described by equations (17) and (18) in which only three reactions involving atomic oxygen, and ozone with the photodissociation of \(\text{NO}_2 \), describe the aeronomic conditions.

The absolute values of NO and \(\text{NO}_2 \) depend on the dissociation of \(\text{N}_2 \) in the lower thermosphere. Since the life-time of nitric oxide in the
mesosphere is relatively long, any downward transport leads to a vertical distribution of NO which follows the hydrostatic distribution. In view of the fact that the chemical reactions occur in the ionosphere and that a chemospheric hypothesis for nitric oxide does not hold there as will be shown in another paper, it is necessary to introduce other indirect processes for the dissociation of molecular nitrogen.
REFERENCES

HERRON, J.T., Rate of the reaction NO + N, and some heterogeneous reactions observed in the ion source of a mass spectrometer, J. Res. Nat. Bur. Stand., 65a, 411, 1961.

