Irradiation solar flux measurements between 120 and 400 nm. state of the art and future needs

by

P.C. SIMON
FOREWORD

This paper entitled "Irradiation solar flux measurements between 120 and 400 nm. State of the art and future needs" has been presented at the XXth COSPAR Meeting (Tel Aviv, June 7-18, 1977). It will be published in Planetary and Space Science.

AVANT-PROPOS

Le travail intitulé "Irradiation solar flux measurements between 120 and 400 nm. State of the art and future needs" a été présenté à la XXe assemblée du COSPAR (Tel Aviv, 7-18 juin 1977). Il sera publié dans Planetary and Space Science.

VOORWOORD

De tekst getiteld "Irradiation solar flux measurements between 120 and 400 nm. State of the art and future needs" werd voorgedragen tijdens de XXste Algemene Vergadering van COSPAR (Tel Aviv, 7-18 juni 1977). Het zal in Planetary and Space Science uitgegeven worden.

VORWORT

Dieser Text "Irradiation solar flux measurements between 120 and 400 nm. State of the art and future needs" wurde zu die"XXth COSPAR meeting"(Tel Aviv, Juni 7-18, 1977) vorgestellt. Dieser Text wird in Planetary and Space Science veröffentlichlich.
IRRADIATION SOLAR FLUX MEASUREMENTS BETWEEN 120 and 400 NM. STATE OF THE ART AND FUTURE NEEDS

by

Paul C. SIMON

Abstract

The irradiation solar fluxes between 120 and 400 nm are reviewed and discussed. The disagreements between the recent observations are pointed out, emphasizing the future needs in this wavelength range for aeronomic purposes. Interpretation of the available data as function of the solar activity cannot explain their discrepancies, showing that the solar variability during the eleven-year cycle is still unknown.

Résumé

Les mesures de flux solaire entre 120 et 400 nm sont revues et discutées. Les désaccords entre les observations récentes sont relevés et les besoins futurs pour l'aéronomie sont définis. L'interprétation des données disponibles en fonction des variations avec l'activité solaire ne peut expliquer les différents écarts entre les mesures et montre clairement que la variation du flux solaire pendant son cycle undécennal est encore inconnue.
Samenvatting

De metingen van de zonneflux tussen 120 en 400 nm worden herzien en besproken. De aandacht wordt gevestigd op het gebrek aan overeenstemming tussen de recente waarnemingen en de toekomstige noden voor aëronomische doeleinden worden gedefinieerd. De interpretatie van de beschikbare gegevens in functie van de zonneactiviteit kan het verschil in de metingen niet verklaren maar toont duidelijk aan dat de verandering van de zonneflux tijdens zijn elfjarige cyclus nog steeds onbekend is.

Zusammenfassung

Die Messungen der Sonnenstrahlung zwischen 120 und 400 nm sind durchgehalten und besprochen worden. Die Differenzen zwischen die Beobachtungen sind verzeichnet worden und die zukünftige Erfordernisse für die Aeronomie sind bestimmt worden. Die Verschiedeheit der Sonnenaktivität kann diese Differenzen in den Daten nicht erklären. Deswegen müssen wir annehmen dass der 11- Jahre- Cyclus der Sonnenstrahlung noch nicht ganz aufgelöst ist.
I. INTRODUCTION

Ultraviolet solar irradiation in wavelengths ranging from 120 to 400 nm initiates the photochemistry of the neutral constituents of planetary atmospheres. For instance, photodissociation of molecular oxygen by radiation of wavelengths shorter than 242 nm is the initial source of odd oxygen in the terrestrial atmosphere, leading in particular to the formation of ozone by reaction with the molecular oxygen in the presence of a third body (N_2, O_2). On the other hand ozone is destroyed by photodissociation in the Hartley continuum and the Huggins bands by radiation at wavelengths shorter than 360 nm, producing the electronically excited atomic oxygen $O(^1D)$. These atoms are in fact the most important oxidizing agent in the stratosphere (Nicolet, 1975). An accurate knowledge of the solar irradiation flux at ultraviolet wavelengths and of its variations with the solar rotational period and the 11-year cycle is thereby fundamental in aeronomy.

The purpose of this work is to review the recent solar irradiance measurements between 120 and 400 nm. The discrepancies between the different observations will be pointed out and discussed in relation to the solar irradiation flux variability.

II. SOLAR IRRADIATION FLUX DATA

Ultraviolet solar radiation observations are generally focused on two different aspects: firstly, those concerning high spatial resolution and secondly, those regarding full disk measurements at medium resolution. Only the latter are fully pertinent for aeronomic purposes. Photochemical calculations require solar flux values averaged over a spectral range determined by the spectral structure of the absorption cross section of the atmospheric constituents. In most cases, wavelength intervals of 500 cm$^{-1}$ and 1 nm are suitable in aeronomy and generally used. However, photodissociation rate coefficient calculations in the spectral range of the Schumann-Runge bands of molecular oxygen (175-204 nm) should be considered carefully. Generally, simple procedures based on the reduction factors can be performed for minor constituents with a smoothly varying absorption cross section by using solar irradiation fluxes averaged over 500 cm$^{-1}$, 1 nm, or for each band in the spectral range...
of the Schumann-Runge bands if the temperature effect is introduced. But this procedure cannot be applied directly for instance, for nitric oxide whose absorption cross section reveals the presence of a rotational structure; such a case requires solar irradiance spectra with sufficient resolution. On the other hand, comparison between observational data obtained with different spectral resolutions ought to be made very carefully. Indeed peak intensities are very dependent on the equivalent slit width of the instrument pointed to the sun. Comparison at discrete wavelengths should, for this reason, be made for data with comparable spectral bandpasses. Generally, for spectral resolution of the order of 0.5 nm, the fine structure of the solar spectrum is sufficiently smeared to allow direct comparisons with less well resolved solar irradiance spectra. In addition, comparisons between measurements made on the whole disc and those made at the centre are not straightforward. This is due to the limb darkening occurring for wavelengths greater than 152 nm (Samain et al., 1975). Beyond this limit, flux measurements made at the centre of the solar disk represent only an upper limit for the corresponding flux integrated over the whole solar disk. It is for this reason that measurements made on radiation originating in a relatively small area of the sun have been excluded from this work.

A correct interpretation of the available data must take into account the flux variabilities arising from changes in solar activity. These belong to three categories determined by their time scale: firstly, variations related to flares having a very short life time; secondly, those related to the solar rotation period (27-day) and finally, those related to the 11-year cycle. The solar irradiation flux enhancement due to the flares could be considered as negligible for wavelengths greater than 140 nm, according to Heath (1969) who observed a 3 B flare on April 21, 1969 by means of broadband sensors centered around 120, 180 and 260 nm. For this flare he reported an enhancement of 16% for the Lyman α emission line and no measurable effect (less than 1%) for the other wavelength ranges. This result is, in fact, confirmed by the flare observations made by Hall (1971).

Since the solar irradiance enhancement related to solar flares seems to be negligible even for the Lyman α line and since there is a lack of data between 120 and 400 nm on possible variations due to a flare, only solar variability related to the 27-day period and the 11-year cycle will be considered in this work.
The solar irradiation of this wavelength range is mainly absorbed in the lower thermosphere by the molecular oxygen, except for the solar Lyman α emission line which penetrates deeply into the mesosphere, leading to the formation of the ionospheric D region.

The Lyman α line of hydrogen emitted by the sun is the most intense chromospheric emission line in the solar spectrum. Its irradiation flux corresponds to the total energy emitted by the sun for wavelengths below 150 nm. Its absolute intensity was first measured in 1949 by Friedman et al.\(^{(1951)}\). Since that time, roughly 40 measurements have been performed using different techniques (see the recent review-paper by Vidal-Madjar, 1977). Most of the experimenters have quoted a measurement accuracy of the order of ± 30%. The generally accepted mean integrated value is 3×10^{11} hν.sec\(^{-1}\).cm\(^{-2}\). However, this value varies with the 11-year cycle and with the solar rotational period. The most recent observations of the variation related to the 27-day solar rotation are in good agreement and suggest a 30% maximum variability (Hall and Hinteregger, 1970; Heath, 1973; Woodgate et al., 1973 and Vidal-Madjar, 1975); Prag and Morse results (1970) gave a 60% variability but referred to only one solar rotation. It should be pointed out that the variation due to the solar rotation is of the order of the absolute accuracy claimed by the different authors. On the other hand, some absolute measurements carried out at the same time disagree by an important factor reaching, for instance, 70% for two observations performed on March 7, 1970 by Smith (1972) and Dickinson (1972); any conclusion concerning the Lyman α variability must, therefore, be very speculative.

In addition, any series of long-term observations generally suffers from aging in the sensitivity of the instrument; satellite-borne instruments need to be recalibrated during the observational period by rocket-borne experiments.

These fundamental remarks are equally valid for the variability measurements over the 11-year solar cycle. The most recent study based on the OSO 5 data (Vidal-Madjar, 1975), which represent the longest survey of Lyman α irradiation flux with only 10% of instrumen-
tal sensitivity degradation per year, leads to a variability of the order of 40%. This value is in good agreement with both the 30% variability proposed by Weeks (1967) and the inter-comparison of measurements performed during the solar cycle 20 as presented in fig. 1.

In the spectral range 120-175 nm, the first measurements fully relevant for aeronomic purposes were those published by Detwiler et al. (1961). By using a photographic detection technique, the accuracy of the data was estimated to be better than ± 20%. Nevertheless, keeping in mind the restriction concerning radiance measurements at the centre of the solar disk, the lower values published by Parkinson and Reeves (1969) have been partially confirmed by the irradiation data obtained by Carver et al. (1972), who used ionization chambers on board satellite WRESAT I in two wavelength ranges centred on 145 and 161 nm. In order to improve the knowledge of the absolute scale of the solar irradiation fluxes in this wavelength range, Ackerman and Simon (1973) carried out rocket measurements using photoelectric detection. Their values are in good agreement with those of Parkinson and Reeves (1969) at 171 nm and intermediate between the lowest and the highest data obtained at 145 nm. More recently, new rocket observations were performed, leading to solar irradiation flux value averaged over 1 nm reported by Rottman (1974) from 115 to 185 nm, by Heroux and Swirbalus (1976) from 121 to 194 nm and by Samain and Simon (1976) from 150 to 210 nm. The two first experiments, characterized by an accuracy of respectively ± 15% and ± 20%, also used a photoelectric detector. Samain and Simon (1976) deduced the solar irradiance from photographic stigmatic spectra, by measuring the radiance at the solar disk center and the center-to-limb variation from the same spectra. They obtained a solar spectrum with a resolution of 0.04 nm and an absolute accuracy of 30%. Very recently, Kjeldseth Moe et al. (1977) have also published rocket photographic data of a quiet region located 300 arc second inside the solar limb which were converted into mean intensities using the center-to-limb variations measured by Samain and Simon (1976). They quoted an accuracy of ± 25%. All these data are reported in fig. 2 for comparison. Discrepancies reach 40% in the 150-160 nm wavelength range where the molecular oxygen photodissociation rate is maximum and are higher below 140 nm. They could be partially explained by the variability of chromospheric emission lines with the solar rotation although the Lyman α irradiance variations could not exceed 30% as mentioned above. Beyond 160 nm the agreement between all the measurement is better than 30%. In
Fig. 1.- Comparison of Lyman α solar irradiation flux measurements during the solar cycle 20. The smoothed sunspot numbers are also shown. References: 1, 2, 3, 4, 5, 6 and 9, Weeks (1967); 7, Fossi et al. (1968); 8, Bruner and Parker (1969); 10, Hinteregger (1970); 11, Bruner (private communication); 12, Woodgate et al. (1973); 13, Smith (1972); 14, Dickinson (1972); 15, Higgins (1976); 16, Ackerman and Simon (1973); 17, Prinz (1974); 18, Heroux et al. (1974); 19 and 20, Rottman (1974); 21, Oshio (private communication); 22, Heroux (private communication); 23, Rottman (private communication); A, Vidal-Madjar (1975); B, Vidal-Madjar (private communication) (after Delaboudinière et al., 1977).
Fig. 2.- Comparison of ultraviolet solar flux reported by various experimenters from 120 to 180 nm. Fluxes for different blackbody temperatures are also shown.
In addition it should be pointed out that the solar irradiation flux measured at 171 nm by Ackerman and Simon (1973), Rottman (1974), Heroux and Swirbalus (1975) and Kjeldseth Moe et al (1977) are practically the same.

Discrepancies of the order of 40% seem difficult to relate to the solar variability with the 11-year cycle because of the lack of data covering a sufficiently large period of the solar cycle as shown in fig. 3. On the other hand a more complete study of the irradiance variations due to the solar rotation was made very recently by Hinteregger et al (1977) by means of the AE satellites. The strongest variations observed during the Carrington rotation nr. 1615 (June 1974) are reported on fig. 4 and compared with the previous data published by Heath (1973), showing a maximum variability of 25% and 9% at 155 and 170 nm respectively. However, it must be pointed out that such solar variations are, in fact, of the same order of magnitude as both the measurement differences and their accuracy ranges.

II.2. 175-240 nm wavelength interval

Solar irradiation fluxes in this wavelength interval are very important for stratospheric and mesospheric aeronomy. They are mainly responsible for the photodissociation of molecular oxygen below 90 km which absorbs radiation of wavelength shorter than 242 nm. Some minor constituents such as nitrogen oxides, water vapor and halocarbons also undergo photodissociation in this wavelength range. Unfortunately, the solar spectrum is not sufficiently well known especially between 175 and 204 nm corresponding to the Schumann-Runge band system. With the exception of the data of Detwiler et al. (1961) already discussed, the only measurements covering this wavelength range are those deduced very recently by Samain and Simon (1976), already mentioned, and those of Brueckner et al (1976) who also determined the solar irradiance fluxes from radiance measurements of a selected quiet area on the solar disk, using the limb-darkening values measured by Samain et al. (1975). Both used photographic detection techniques and obtained solar spectra with resolutions of 0.04 and 0.007 nm respectively. The data, extending up to 210 nm were integrated over 1 nm interval for comparison and are reported on fig. 5 with the other
Fig. 3.- Comparison of solar irradiation flux measurement in the 150-160 nm interval during the solar cycle 20. The smoothed sunspot numbers are also shown (after Delaboudinière et al., 1977).
Fig. 4. Solar flux variations related to the solar rotational period from Lyman α to 300 nm. The values of Hinteregger et al (1977) correspond to the Carrington rotation n° 1615 (June 1974).
Fig. 5.- Comparison of ultraviolet solar flux reported by various experimenters from 170 to 210 nm. Fluxes for different blackbody temperatures are also shown.
measurements covering partially the same wavelength range. Fig. 6 illustrates the ratio between all the recent observations taking as reference the values of Samain and Simon (1976). The first conclusion to be drawn is that the data of Brueckner et al (1976) are quasi systematically 25% lower than those of Samain and Simon (1976). A good agreement occurs at 175 nm with the results of Rottman (1964) and of Heroux and Swirbalus (1975), but discrepancies of the order of 50% appears around 190 nm. Such a difference has been discussed by Samain and Simon (1976) who come to the conclusion that, from 180 to 194 nm, their own data should be considered as an upper limit for the solar irradiance while those of Heroux and Swirbalus should give a lower limit. Beyond 200 nm, the most recent irradiance measurements are those obtained by Simon (1974) with a balloon borne spectrometer. They are 40% lower than the previous balloon measurements reported by Ackerman et al. (1971) and are also lower than Broadfoot's results (1972), except between 226 and 230 nm where the agreement is within 15%. The observations of Broadfoot (1972) were obtained by means of a rocket borne spectrometer with a spectral resolution of 0.3 nm.

The accuracies quoted by these experimenters fall in the range ±10 to ±30% for all the measurements mentioned above. For this wavelength interval, the evidence for variability during the solar cycle 20 is no more conclusive than at the shorter wavelengths. This fact is illustrated by fig. 7 where the available data at 200 nm are plotted as a function of the dates of the measurements and compared with the smoothed sunspot number during solar cycle 20. Fig. 8 compares the data at 177, 200 and 220 nm with the 10.7 cm flux as a reference state. The lack of reliable data is quite evident and it is impossible to reach any unambiguous conclusion; moreover, the omission of one or two results could lead to opposite conclusions. It should be mentioned that Heath (1976), on the basis of only his own measurements performed by satellites and by rockets since 1966, claimed that the solar irradiance at 200 nm should vary by a factor of two. This statement is in contradiction with a more complete analysis of the data and with the variability of the Lyman a chromospheric line which could not exceed 40-60% during solar cycle 20.

The irradiance variations related to the solar rotation are less than 10% beyond 175 nm and are decreasing with increasing wavelength (fig. 5). The results of Heath (1973) and Hinteregger et al (1977) were also confirmed by an analysis based on the plage radiance
Fig. 6: Ratio of solar irradiation flux measurements from 175 to 210 nm in comparison with the data of Samain and Simon (1976).
Fig. 7.- Comparison of solar irradiation flux measurements at 200 nm during the solar cycle 20. The smoothed sunspot numbers are also shown (after Delaboudinière et al, 1977).
Fig. 8.- Solar flux variability at 177, 200 and 220 nm in function of the 10.7 cm solar flux. References: 1 and 2, Heath (1976); 3, Ackerman et al. (1971); 4, Broadfoot (1972); 5 and 8, Simon (1974); 6 and 9, Rottman (1974); 7, Samain and Simon (1976); 10, Brueckner et al. (1976); 11, Heroux and Swirbalus (1976).
measurement carried out by Brueckner et al (1976). Such variability is comparable to that due to the sun-earth annual distance change involving periodic solar variation of 6.6% from January (max.) to July (min.).

II.3. 240-400 nm wavelength interval

This wavelength range is directly related to the photodissociation processes in the stratosphere and in the troposphere. The recent published solar irradiance values are based on satellite, rocket, balloon, aircraft and ground-based observations. The only measurements performed by satellite were published by Heath (1973) reporting irradiance values at 10 discrete wavelengths between 250 and 350 nm. The rocket measurements of Broadfoot already mentioned from 210 to 320 nm are the most reliable contribution covering continuously the most important wavelength range for the photodissociation of ozone (fig. 9). On the other hand, Arvesen et al (1969) carried out from aircraft measurements from 300 to 2500 nm by means of a double spectroradiometer having a resolution of 0.1 nm in the ultraviolet. Unfortunately, they have some discrepancies with Broadfoot's data between 300 and 320 nm in which occurs the limit of photodissociation of O_3 producing the excited atomic oxygen $O(^1D)$ which is particularly important for the stratospheric aeronomy (Nicolet, 1975). The values of Simon (1975) extending from 284 to 354 nm obtained by balloon observations are in very good agreement with those of Broadfoot (1972) up to 300 nm and with those of Arvesen et al (1969) beyond 330 nm (fig. 10). In fact, Broadfoot (1972) claimed an accuracy of ±10% for his measurements except beyond 300 nm where the error is larger. On the other hand Arvesen et al (1969) estimate their error to be 25% at 300 nm, 6% at 320 nm and 3.2% at 400 nm. The data of Simon (1975) could therefore provide useful irradiance values between 300 and 330 nm. Other measurements obtained from aircraft are those of Thekaekara (1969) but the tables of irradiances integrated over 5 nm are based on an average of data coming from four different instruments. More recently, irradiances at 0.1 nm intervals were published by Thekaekara (1974) in the wavelength range 300-610 nm. Unfortunately, his results show many errors in the wavelength scale (Simon, 1975) making difficult a correct comparison with the other measurements. Observations of De Luisi (1975) from 298.1 to 400 nm were obtained from ground-based
Fig. 9.- Comparison of ultraviolet solar flux reported by various experimenters from 210 to 280 nm. Fluxes for different blackbody temperatures are also shown.
Fig. 10.- Comparison of ultraviolet solar flux reported by various experimenters from 280 to 350 nm. Fluxes for different blackbody temperatures are also shown.
measurement but only relative calibration of the spectrometer was performed. Absolute
irradiation fluxes were obtained adjusting the total energy in the wavelength range
On the other hand, Labs and Neckel (1970) measured, from a high mountain observatory,
the solar radiance near the disk centre and computed the irradiation fluxes from 330 to
1250 nm integrated over 10 nm, using the limb-darkening data of David and Elste (1962).
The accuracy of all these observations allows an estimation of the solar irradiance flux
within 10% around 300 nm and within 5% around 400 nm.

The irradiance variability is as poorly known in this wavelength range as below 200 nm.
As for 200 nm, Heath (1976) also made measurement at 300 nm leading to a variability
related to the 11-year cycle of the order of 20%. Nevertheless, taking into account the other
irradiance measurements, there is no conclusive evidence for such variability. The irradiance
variations due to the solar rotational period are less than 1% beyond 300 nm according to
Heath (1973).

III. CONCLUSIONS AND FUTURE NEEDS

Accuracy in the field of ultraviolet spectroradiometry of the sun depends upon many
factors which can be divided into three parts: a/ the uncertainty of the available radiometric primary and transfer standards, b/ the lack of precision in the instrument calibration
in the laboratory, c/ the errors introduced by the measurements of the sun itself.

The spectral irradiance transfer detector standards available from the National Bureau
of Standards have now an uncertainty quoted from 5 to 10% for the photodiode working in
the 115-254 nm interval, and of 5% for the silicon photovoltaic detectors working beyond
257 nm. The transfer source standards give an uncertainty between 3 and 6% respectively
for the tungsten-halogen source beyond 250 nm and for the deuterium lamp from 200 to
350 nm. In addition, synchrotron irradiation flux can also be used for ultraviolet calibration
with an uncertainty of 5%. Such values are generally smaller than the quoted accuracies for
the available solar irradiance measurements which have to take into account all the errors
introduced by the spectroradiometric measurement, including some instrument definition factors but also and mainly the fact that solar ultraviolet observations require space observations. This means that the measurements are made at a relatively long time after the laboratory calibration, that the instruments generally suffer from contamination and consequently show a loss of sensitivity which is especially evident for the free-flyer instruments. Table 1 summarizes the quoted accuracies and the discrepancies already discussed in this work.

The discrepancies are still too large to allow an unambiguous interpretation of solar variability; no conclusion concerning its magnitude can be drawn because of the error associated with all the measurements and of the inadequate time coverage during the solar cycle 20.

The first and most urgent requirement for the solution of the question of the solar ultraviolet irradiance variability is certainly the improvement of the measurement accuracy by means of, for instance, the "Spacelab" allowing some absolute calibration experiment in the space environment of solar observational instrument which can, in addition be recalibrated after the flight. One example of such experiment has already been proposed by Schmidtke (1976) for the EUV range. The second requirement is to survey continuously the solar irradiance using free-flyer instruments which should be cross-calibrated regularly by means of shuttle-borne instrument. In addition, some intercomparisons of instrument calibration would be very useful to meet the requirements concerning the reproducibility of the solar irradiance measurements. These accuracy requirements are also summarized in table 1. Strong emphasis is generally placed on the need to improve the accuracy of measurement of the solar irradiation flux and its possible variations, as they affect to the stratospheric aeronomy, in order to reach a better understanding of the middle atmosphere.
<table>
<thead>
<tr>
<th></th>
<th>Ionosphere Thermosphere</th>
<th>Lower thermosphere</th>
<th>Mesosphere Higher stratosphere</th>
<th>Stratosphere Troposphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wavelength</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interval (nm)</td>
<td>Ly α (121,6)</td>
<td>120-175</td>
<td>175-240</td>
<td>240-400</td>
</tr>
<tr>
<td>Quoted accuracy</td>
<td>± 30%</td>
<td>± 15 to ± 30%</td>
<td>± 10 to ± 30%</td>
<td>± 5 to ± 10%</td>
</tr>
<tr>
<td>Discrepancy</td>
<td>100%</td>
<td>40%</td>
<td>40 à 25%</td>
<td>1 measurement from 230 to 285 nm</td>
</tr>
<tr>
<td>Required accuracy</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5% absolute</td>
</tr>
<tr>
<td>Required spectral resolution</td>
<td>1 to 5 nm</td>
<td>0.1 to 1 nm</td>
<td>0.1 to 1 nm</td>
<td>0.1 to 1 nm (0.01 nm for occultation measurement)</td>
</tr>
<tr>
<td>Variability (27-day)</td>
<td>30%</td>
<td>30 to 10%</td>
<td>10 to 1%</td>
<td>< 1%</td>
</tr>
<tr>
<td>Variability (11-year)</td>
<td>40-60%</td>
<td>100% ?</td>
<td>100% ?</td>
<td>50 à 20% ?</td>
</tr>
</tbody>
</table>
REFERENCES

<table>
<thead>
<tr>
<th>Page</th>
<th>Name</th>
<th>Title</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>115</td>
<td>LEMAIRE, J. and M. SCHERER</td>
<td>Kinetic models of the solar and polar winds.</td>
<td>1973</td>
</tr>
<tr>
<td>116</td>
<td>NICOLET, M.</td>
<td>La biosphère au service de l'atmosphère.</td>
<td>1973</td>
</tr>
<tr>
<td>117</td>
<td>BIAUME, F.</td>
<td>Nitric acid vapor absorption cross section spectrum and its photodissociation in the stratosphere.</td>
<td>1973</td>
</tr>
<tr>
<td>118</td>
<td>BRASSEUR, G.</td>
<td>Chemical kinetic in the stratosphere.</td>
<td>1973</td>
</tr>
<tr>
<td>119</td>
<td>KOCKARTS, G.</td>
<td>Helium in the terrestrial atmosphere.</td>
<td>1973</td>
</tr>
<tr>
<td>120</td>
<td>ACKERMAN, M., J.C. FONTANELLA, D. FRIMOUT, A. GIRARD, L. GRAMONT, N. LOUISNARD, C. MULLER and D. NEVEJANS</td>
<td>Recent stratospheric spectra of NO and NO₂.</td>
<td>1973</td>
</tr>
<tr>
<td>121</td>
<td>NICOLET, M.</td>
<td>An overview of aeronomic processes in the stratosphere and mesosphere.</td>
<td>1973</td>
</tr>
<tr>
<td>122</td>
<td>LEMAIRE, J.</td>
<td>The "Roche-Limit" of ionospheric plasma and the formation of the plasmapause.</td>
<td>1973</td>
</tr>
<tr>
<td>123</td>
<td>SIMON, P.</td>
<td>Balloon measurements of solar fluxes between 1960 Å and 2300 Å.</td>
<td>1974</td>
</tr>
<tr>
<td>124</td>
<td>ARJIS, E.</td>
<td>Effusion of ions through small holes.</td>
<td>1974</td>
</tr>
<tr>
<td>125</td>
<td>NICOLET, M.</td>
<td>Aëronomie.</td>
<td>1974</td>
</tr>
<tr>
<td>126</td>
<td>SIMON, P.</td>
<td>Observation de l'absorption du rayonnement ultraviolet solaire par ballons stratosphériques.</td>
<td>1974</td>
</tr>
<tr>
<td>127</td>
<td>VERCHEVAL, J.</td>
<td>Contribution à l'étude de l'atmosphère terrestre supérieure à partir de l'analyse orbitale des satellites.</td>
<td>1973</td>
</tr>
<tr>
<td>128</td>
<td>LEMAIRE, J. and M. SCHERER</td>
<td>Exospheric models of the topside ionosphere.</td>
<td>1974</td>
</tr>
<tr>
<td>129</td>
<td>ACKERMAN, M.</td>
<td>Stratospheric water vapor from high resolution infrared spectra.</td>
<td>1974</td>
</tr>
<tr>
<td>130</td>
<td>ROTH, M.</td>
<td>Generalized invariant for a charged particle interacting with a linearly polarized hydromagnetic plane wave.</td>
<td>1974</td>
</tr>
<tr>
<td>131</td>
<td>BOLIN, R.C., D. FRIMOUT and C.F. LILLIE</td>
<td>Absolute flux measurements in the rocket ultraviolet.</td>
<td>1974</td>
</tr>
<tr>
<td>132</td>
<td>MAIGNAN, M. et C. MULLER</td>
<td>Méthodes de calcul de spectres stratosphériques d'absorption infrarouge.</td>
<td>1974</td>
</tr>
<tr>
<td>133</td>
<td>ACKERMAN, M., J.C. FONTANELLA, D. FRIMOUT, A. GIRARD, N. LOUISNARD and C. MULLER</td>
<td>Simultaneous measurements of NO and NO₂ in the stratosphere.</td>
<td>1974</td>
</tr>
<tr>
<td>134</td>
<td>NICOLET, M.</td>
<td>On the production of nitric oxide by cosmic rays in the mesosphere and stratosphere.</td>
<td>1974</td>
</tr>
<tr>
<td>135</td>
<td>LEMAIRE, J. and M. SCHERER</td>
<td>Ionosphere-plasmasheet field aligned currents and parallel electric fields.</td>
<td>1974</td>
</tr>
<tr>
<td>137</td>
<td>KOCKARTS, G.</td>
<td>Neutral atmosphere modeling.</td>
<td>1974</td>
</tr>
<tr>
<td>138</td>
<td>BARLIER, F., P. BAUER, C. JAECK, G. THUILLIER and G. KOCKARTS</td>
<td>North-South asymmetries in the thermosphere during the last maximum of the solar cycle.</td>
<td>1974</td>
</tr>
<tr>
<td>139</td>
<td>ROTH, M.</td>
<td>The effects of field aligned ionization models on the electron densities and total flux tubes contents deduced by the method of whistler analysis.</td>
<td>1974</td>
</tr>
<tr>
<td>140</td>
<td>DA MATA, L.</td>
<td>La transition de l'homosphère à l'hétérosphère de l'atmosphère terrestre.</td>
<td>1974</td>
</tr>
<tr>
<td>141</td>
<td>LEMAIRE, J. and R.J. HOCH</td>
<td>Stable auroral red arcs and their importance for the physics of the plasmapause region.</td>
<td>1975</td>
</tr>
<tr>
<td>142</td>
<td>ACKERMAN, M., NO, NO₂ and HNO₃ below 35 km in the atmosphere.</td>
<td>Stability aureal red arcs and their importance for the physics of the plasmapause region.</td>
<td>1975</td>
</tr>
<tr>
<td>143</td>
<td>LEMAIRE, J.</td>
<td>The mechanisms of formation of the plasmapause.</td>
<td>1975</td>
</tr>
<tr>
<td>144</td>
<td>SCIALOM, G., C. TAIEB and G. KOCKARTS</td>
<td>Daytime valley in the F1 region observed by incoherent scatter.</td>
<td>1975</td>
</tr>
<tr>
<td>145</td>
<td>SIMON, P.</td>
<td>Nouvelles mesures de l'ultraviolet solaire dans la stratosphère.</td>
<td>1975</td>
</tr>
<tr>
<td>146</td>
<td>BRASSEUR, G. et M. BERTIN</td>
<td>Un modèle bi-dimensionnel de la stratosphère.</td>
<td>1975</td>
</tr>
<tr>
<td>147</td>
<td>LEMAIRE, J. et M. SCHERER</td>
<td>Contribution à l'étude des ions dans l'ionosphère polaire.</td>
<td>1975</td>
</tr>
<tr>
<td>148</td>
<td>DEBEHOGNE, H. et E. VAN HEMELRIJCK</td>
<td>Etude par étoiles-tests de la réduction des clichés pris au moyen de la caméra de triangulation IAS.</td>
<td>1975</td>
</tr>
<tr>
<td>149</td>
<td>DEBEHOGNE, H. et E. VAN HEMELRIJCK</td>
<td>Méthode des moindres carrés appliquée à la réduction des clichés astrométriques.</td>
<td>1975</td>
</tr>
<tr>
<td>150</td>
<td>DEBEHOGNE, H. et E. VAN HEMELRIJCK</td>
<td>Contribution au problème de l'aberration différentielle.</td>
<td>1975</td>
</tr>
</tbody>
</table>