CHEMICAL KINETIC IN THE STRATOSPHERE

G. BRASSEUR
Institut d'Aéronomie Spatiale
3, avenue Circulaire
B - 1180 Bruxelles (Belgique)

Summary

Ozone is produced by the photodissociation of molecular oxygen and can be destroyed by several reactions involving the nitrogen - hydrogen - oxygen atmosphere. In the lower part of the stratosphere, and for photochemical conditions, an important loss of ozone is due to the NOx reactions. Nitric oxide is formed in the stratosphere after dissociation of nitrous oxide by the excited oxygen atom O(1D). The formation of nitric acid is possible by the presence of hydroxyl radicals. Therefore a careful study of the hydrogen atmosphere is necessary. Water vapor, methane and molecular hydrogen have an indirect influence on the ozone distribution in the stratosphere.

1. INTRODUCTION

The aeronomy of the stratosphere has been studied with much attention for many years by different authors (see for example Nicolet[1], [2], [3]) but an increased attention has been given to these problems since it has been pointed out that high altitude aircrafts could have an impact on the earth's climate and on the U.V. radiation intensity at ground level.

Before trying to estimate the magnitude of such impacts, it is necessary to clearly understand the physical processes of the natural stratosphere. Many important questions still remain unsolved, e.g. transport mechanisms, specially through the tropopause; important reaction rates and absorption cross sections are not known with enough accuracy.

The purpose of this paper is to show that the problem of the stratosphere can not be solved without a good understanding of its photochemistry and the introduction of most minor constituents. A special attention will be devoted to the nitric oxides chemistry.

2. PRODUCTION AND DESTRUCTION OF OZONE

The minor constituent which plays the major role in the stratosphere certainly is ozone which is produced from the photodissociation of molecular oxygen for radiation of wavelength shorter than 242 nm:

\[
\begin{align*}
J_2 & : \quad \text{O}_2 + \text{hv} \rightarrow \text{O} + \text{O}_2 \\
\end{align*}
\]

It is destroyed by reaction

\[
\begin{align*}
J_3 & : \quad \text{O}_3 + \text{hv} \rightarrow \text{O}_2 + \text{O} \\
\end{align*}
\]

These reactions have been proposed in 1930 by Chapman [4] and explain the presence of a maximum of the ozone concentration in the middle of the stratosphere. But the obtained concentrations are too high compared with most experimental data since other loss processes have been omitted. In the upper stratosphere and above the stratopause, odd oxygen is destroyed by hydrogen compounds (Bates and Nicolet [5])

\[
\begin{align*}
\begin{align*}
J_2 & : \quad \text{O}_3 + \text{H} \rightarrow \text{O}_2 + \text{OH} \\
J_3 & : \quad \text{O} + \text{OH} \rightarrow \text{O}_2 + \text{H} \\
J_4 & : \quad \text{O} + \text{NO}_2 \rightarrow \text{O}_2 + \text{OH} \\
\end{align*}
\end{align*}
\]

and in the lower stratosphere by the NOx catalytic cycle (Crutzen [6], Johnston [7])

\[
\begin{align*}
\begin{align*}
J_4 & : \quad \text{NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2 \\
J_5 & : \quad \text{NO}_2 + \text{hv} \rightarrow \text{NO} + \text{O} \\
J_6 & : \quad \text{NO}_2 + \text{O} \rightarrow \text{NO} + \text{O}_2 \\
\end{align*}
\end{align*}
\]

The production rate of ozone is thus given by

\[
P(\text{O}_3) = 2 \: J_2 \: n(\text{O}_2)
\]
and is represented on Fig. 1 for an overhead sun. Its integrated value between 10 and 50 km is of the order of 4×10^{13} cm$^{-2}$ s$^{-1}$ but slightly varies with latitude and season since the penetration of solar radiation depends on the ozone content which is larger in the polar regions than near the equator.

The loss rates of ozone are respectively given for the Chapman reactions by

$$L_1(0_3) = \frac{2J_1 k_3 n(0_3)}{k_2 n(M) n(0_2)}$$

for the hydrogen compounds reactions by

$$L_2(0_3) = \frac{J_3 n(0_3)}{k_2 n(M) n(0_2)} [a_5 n(OH) + a_7 n(NH_2)] + a_2 n(H) n(0_3)$$

and for the NO$_x$ reactions by

$$L_3(0_3) = \frac{2J_3 b_3 n(NO_2) n(0_3)}{k_2 n(M) n(0_2)}$$

The loss rates L_1 and L_2 are represented on Fig. 2 for mid-latitude conditions and using respectively 10^{-9} and 3×10^{-9} as NO$_2$ mixing ratio. Rate L_2 has not been represented since the rate constants a_5 and a_7 and the NO$_2$ distributions are not well known. Nevertheless, order of magnitude calculations show that L_2 can be neglected in the major part of the stratosphere compared with L_1 and L_3. The loss integral loss between 10 and 50 km gives for L_1 1.7×10^{13} cm$^{-2}$ s$^{-1}$ and for L_2 6×10^{12} cm$^{-2}$ s$^{-1}$ and 1.8×10^{13} cm$^{-2}$ s$^{-1}$ if 10^{-9} and 3×10^{-9} are used again for the NO$_2$ mixing ratio.

3. THE HO CHEMISTRY IN THE STRATOSPHERE

The production of oxygen atoms in their electronically excited 1D state plays an important role in the stratospheric aerosol.

$$O_3 + h\nu (\lambda < 310 \text{ nm}) \rightarrow O^*(1D) + O(1D)$$

$$O_3 + h\nu (\lambda < 400 \text{ nm}) \rightarrow O(3P) + O(1D)$$

A precise determination of the $O(1D)$ distribution depends on the quantum yield of these processes. According to DeMore and Raper [8] the quantum efficiency at $\lambda < 310$ nm is equal to unity and it sharply decreases over this limit. At 334 nm (Jones and Hayne [9]), the photodissociation of ozone leads to $O(1D)$ atoms only. In our models, two extreme values have been used in order to take a sensitivity evaluation. We prefer the maximum value since new measurements by Simonaitis et al. [10] indicate a quantum efficiency of about 0.5 at 313 nm.
Fig. 2. - Loss rate of ozone by the Chapman reactions (L\textsubscript{Ch}) and by the NO\textsubscript{x} reactions (L\textsubscript{NO\textsubscript{x}}) for mid-latitude conditions and an overhead sun. L\textsubscript{NO\textsubscript{x}} has been computed using the constant values of 1 and 3 ppbv as NO\textsubscript{x} mixing ratio.

The O(13D) atoms are quickly destroyed by quenching with O\textsubscript{2} and N\textsubscript{2} but a fraction of them dissociate water vapor, methane and molecular hydrogen to produce OH and H radicals:

\[\text{H}_2\text{O} + \text{O}(1\text{D}) \rightarrow \text{OH} + \text{OH}^*(v=2) + 28.8 \text{ kcal} \]
\[\text{CH}_4 + \text{O}(1\text{D}) \rightarrow \text{CH}_3 + \text{OH}^*(v=4) + 43.5 \text{ kcal} \]
\[\text{H}_2 + \text{O}(1\text{D}) \rightarrow \text{H} + \text{OH}^*(v=4) + 43.5 \text{ kcal} \]

In the stratosphere, the water vapor mixing ratio remains constant and is of the order of 3 ppmv. Methane is produced at ground level, diffuses upward and is dissociated by OH or O(1D). Its mixing ratio at the tropopause is of the order of 1.5 ppmv. The corresponding value for molecular hydrogen is 0.5 ppmv.

Other reactions involving OH, H and H\textsubscript{2}O must be introduced in order to determine the equilibrium conditions between these radicals (fig. 3):

- H formation and OH destruction:
 \[(a_1) \]: \text{OH} + \text{O} \rightarrow \text{O}_2 + \text{H} + 16.6 \text{ kcal} \]
 \[(a_36) \]: \text{OH} + \text{OH} \rightarrow \text{CO}_2 + \text{H} + 24 \text{ kcal} \]

- \text{H}_2\text{O}_2 formation and H destruction
 \[(a_1) \]: \text{H} + \text{O}_2 + \text{M} \rightarrow \text{H}_2\text{O}_2 + \text{M} + 46 \text{ kcal} \]

- \text{H}_2\text{O}_2 formation and OH destruction
 \[(a_30) \]: \text{OH} + \text{H}_2\text{O}_2 \rightarrow \text{NO}_2 + \text{H}_2\text{O} + 30 \text{ kcal} \]
Fig. 3. Reaction scheme showing the OH - H - HOO cycle in the stratosphere.

- OH formation and H destruction

$$(a_2): \text{H} + \text{O}_3 \rightarrow \text{O}_2 + \text{OH}^*(v = 9) + 77 \text{ kcal}$$

- OH formation and HOO destruction

$$(a_6): \text{HOO} + \text{O} \rightarrow \text{O}_2 + \text{OH}^*(v = 6) + 55 \text{ kcal}$$

$$(a_{26}): \text{HOO} + \text{NO} \rightarrow \text{OH} + \text{NO}_2 + 9 \text{ kcal}$$

These different mechanisms have been studied with great attention by several authors (see e.g. Nicolet [2]) and won't be discussed in detail here. However, it can easily be seen that the ratio $n(\text{HOO})/n(\text{OH})$ is

$$\frac{n(\text{HOO})}{n(\text{OH})} = \frac{a_5 n(0) + a_{16} n(\text{CO})}{a_6 n(0) + a_{26} n(\text{NO})} = \frac{a_{10} n(\text{H}_2\text{O}_2)}{a_5 n(0) + a_{36} n(\text{CO})}$$

In the upper stratosphere, it simply becomes

$$\frac{n(\text{HOO})}{n(\text{OH})} = \frac{a_5}{a_6} = \frac{a_1 n(M) n(\text{O}_2)}{a_1 n(M) n(\text{O}_2) + a_2 n(\text{O}_4)} = \frac{a_{10} n(\text{H}_2\text{O}_2)}{a_5 n(0) + a_{36} n(\text{CO})}$$

and near the tropopause

$$\frac{n(\text{HOO})}{n(\text{OH})} = \frac{a_{36} n(\text{CO}) + a_{30} n(\text{H}_2\text{O}_2)}{a_{26} n(\text{NO})}$$

This ratio, which plays a major role in the stratospheric photochemistry and specially (see below) on nitrogen oxides and acids cannot be correctly evaluated since the rate constants a_5 and a_7 and the concentrations of carbon monoxide, nitric oxide and hydrogen peroxide are not known with enough precision. However working values have been used, namely 1 and 9 for the $n(\text{H}_2\text{O}_2)/n(\text{OH})$ ratio.

If we finally introduce the net loss mechanisms of HOO, reforming water vapor

$$(a_{16}): \text{OH} + \text{OH} \rightarrow \text{H}_2\text{O} + \text{O}$$
The global balance equation for H_2O can be written
\[a^* \left[n(H_2O) + n(CH_4) + n(H_2) \right] = a_{16} n^2(\text{OH}) + a_{17} n(\text{OH}) n(H_2O) + a_{38} n(CH_4) n(\text{OH}). \]

In a more detailed study, nitric acid should also be introduced in the H_2O problem since, as it will be seen below, it contributes to the OH formation and destruction. Nevertheless, it can be seen that the OH concentration closely depends on the nitrogen and the carbon oxides chemistry which must be studied with much attention. (see for example Brasseur and Nicolet [11] and Nicolet and Peetersmans [12]).

4. THE NO PHOTOCHEMISTRY IN THE STRATOSPHERE

It was believed until a few years ago that the presence of nitrogen oxides in the stratosphere was due to its production above 90 km and its downward transport by eddy diffusion. However, in 1970, Nicolet [2] has identified an in situ source of NO due to the dissociation of nitrous oxide by ^1D oxygen atom
\[(b_{19}) \quad N_2O + O(^1D) \rightarrow 2 NO \]
associated with
\[(b_{38}) \quad N_2O + O(^1D) \rightarrow N_2 + O_2 \]

The stratospheric production of NO is thus given by
\[P(NO) = 2 b_{39} n(N_2O) n(^1D) \]

Nitrous oxide is formed by bacteria at ground level and diffuses into the stratosphere. But, during daytime, it is photodissociated by solar radiation and about ten per cent of it is destroyed by reactions (b_{19}) and (b_{38}). The N_2O distribution is thus very sensitive to the transport conditions; the eddy flux \(\phi \) is related to the concentration \(n \) by
\[\phi = -K \frac{\partial n}{\partial z} = \frac{2n \ n \ \partial T}{9 \pi H \ T \ \partial z} \]
where \(H \) is the atmospheric scale height and \(T \) the temperature. In the troposphere, where the mean residence time is 1 month, the adopted value for the eddy diffusion coefficient \(K \) is \(2 \times 10^5 \) cm^2 s\(^{-1}\). But in the stratosphere, where the mean residence time varies between 1 to 2 years, a value between \(10^7 \) and \(10^8 \) cm^2 s\(^{-1}\) must be adopted. Since there are variations with season and latitude, two analytical profiles \(K_{\text{min}} \) and \(K_{\text{max}} \) which seem to represent acceptable values have been chosen (fig. 4) in order to estimate the sensitivity of the profiles to the transport intensity.

![Fig. 4. Variable values of the eddy diffusion coefficient with altitude used in the computations.](image)
The vertical distribution of the NO production (fig. 5) depends not only on the eddy diffusivity profile but also on the ozone distribution and the efficiency of its photodissociation to form O(1D) atoms. The NO production rate reaches a maximum value of the order of 100 cm³ s⁻¹ in the middle of the stratosphere. The values represented on fig. 5 have been divided by 2 in order to take into account the day and night effect.

Fig. 5.- Vertical distribution of NO production for various stratospheric conditions.

The total NO production by reaction O(1D) with N₂O is about \((1.5 \pm 1) \times 10^8\) cm⁻³ s⁻¹ (Nicolet and Peetermans [13]), which is the same order of magnitude as the artificial production by a conventional fleet of 500 SST aircrafts (334 equipped with 4 engines and 166 with 2 engines), flying 7 hours a day and emitting 10 ± 2.5 grams of NO per kilogram of fuel consumed.

As soon as it is produced, a fraction of the NO molecules are converted into NO₂ molecules by reaction (h₅) which is associated with (b₁) and (J(NO₂)) (fig. 6). Since the lifetime of NO₂ is very short during daytime, photochemical conditions can be accepted and the NO₂/NO ratio is given by (fig. 7)

![Diagram](image-url)

Fig. 6.- NO - NO₂ cycle.
Fig. 7. - Vertical distribution in the stratosphere of the ratio \(\frac{n(\text{NO}_2)}{n(\text{NO})} \) for a solar zenith angle of 60°.

\[
\frac{n(\text{NO}_2)}{n(\text{NO})} = \frac{b_4 n(\text{O}_3)}{J_{\text{NO}_2} + b_3 n(\text{O})}
\]

In the lower part of the stratosphere where the oxygen atom concentration is small, the ratio is proportional to the ozone concentration and its order of magnitude is one. Above 35 km, where \(J_{\text{NO}_2} \ll b_4 n(\text{O}) \), the ratio decreases rapidly to reach less than 0.05 at 50 km. During nighttime, NO is completely converted into \(\text{NO}_2 \).

In the upper part of the stratosphere and above the stratopause, the photodissociation of NO must be considered as an important loss process for \(\text{NO}_x \) (Brasseur and Cieslik [14]) since we have (fig. 8)

\[\text{N}_2 \rightarrow \text{hv}, \text{etc...} \]

Fig. 8. - Important reactions involving \(\text{N} \) and \(\text{NO} \) in the mesosphere and stratosphere.
\((J_{\text{NO}})\); \(\text{NO} + h\nu (\lambda < 191 \text{ nm}) \rightarrow \text{N} + \text{O}\)

\((b_0)\); \(\text{N} + \text{NO} \rightarrow \text{O} + \text{N}_2 + 75 \text{ kcal}\)

\((b_0)\); \(\text{N} + \text{O}_2 \rightarrow \text{O} + \text{NO} + 32 \text{ kcal}\).

The most important contribution to the photodissociation coefficient \(J_{\text{NO}}\) is due to the predissociation in the \(\delta\) bands, mainly the \(\delta(0-0)\) and \(\delta(1-0)\) bands since the \(\epsilon\) band have been shown by Callear and Pilling [15] not to be predissociated and since the \(\delta\) and \(\gamma\) bands have very small absorption coefficients. In the spectral range that must be consider, the absorption of the solar radiation is due in part to the Schumann-Runge bands of molecular oxygen. So, a line by line integration is necessary in order to compute the \(J_{\text{NO}}\) coefficient (fig. 9). A detailed analysis of this question has been performed by Cieslik and Nicolet [16] who have shown that it is not possible to deduce equivalent average cross sections which are not altitude dependant.

![Graph](image)

Fig. 9.—Photodissociation coefficient of NO versus altitude for an overhead sun and a zenith angle of 60°

The net loss rate of nitrogen oxides \(L(\text{NO})\) is given by

\[
L(\text{NO}) = \frac{2 b_0 J_{\text{NO}} n^2(\text{NO})}{[b_0 n(\text{O}_2) + b_6 n(\text{NO})]}
\]

and is represented on fig. 10 where it is compared with the production and transport rate.

In the middle and lower stratosphere, other chemical reactions involving odd nitrogen atoms in polyatomic molecules must be introduced. The most important constituent certainly is nitric acid on which we shall confine our attention (fig. 11).

This constituent is mainly produced by the reaction

\[
\text{NO}_2 + \text{OH} \rightarrow \text{HNO}_3
\]

which can be considered as a three body reaction above 20 km and a two body reaction at sufficient high pressure.

Nitric acid is destroyed by hydroxyl radicals

\((b_0)\); \(\text{HNO}_3 + \text{OH} \rightarrow \text{H}_2\text{O} + \text{NO}_3\)

and is photodissociated by ultraviolet light

\((J_{\text{HNO}_3})\); \(\text{HNO}_3 + h\nu \rightarrow \text{OH} + \text{NO}_2\)
Fig. 10. - Production, transport and loss rates which can be considered as the most probable in the stratosphere. The production term may increase in the lower part of the stratosphere by the cosmic ray effect.

Fig. 11. - Reaction scheme showing the formation and destruction of nitric acid.
with a quantum yield which seems to be equal to unity in the 190-300 nm spectral range (Johnston, private communication). Those reactions cannot be considered as net loss processes for odd nitrogen since there is a reformulation of nitrogen di-and trioxides.

The absorption cross sections of HNO₃ has been measured by Dalmon [17], Johnston and Graham [18] and Biaum [19]. From these data, the photodissociation coefficient at zero optical depth is found to be $1.7 \times 10^{-5} \text{ s}^{-1}$ for $\lambda = 185 - 345$ nm. Its variation with altitude is represented on fig. 12.

![Graph of photodissociation coefficient of nitric acid versus altitude for different values of the solar zenith angle and assuming a quantum efficiency equal to one.](image)

Fig. 12.- Photodissociation coefficient of nitric acid versus altitude for different values of the solar zenith angle and assuming a quantum efficiency equal to one.

Considering photochemical equilibrium conditions the ratio between the HNO₃ and NO₂ concentration is given by

$$\frac{n(\text{HNO}_3)}{n(\text{NO}_2)} = \frac{b_{22} n(\text{OH})}{J_{\text{HNO}_3} + b_{27} n(\text{OH})}$$

and is represented on fig. 13. During daytime, the ratio is larger than 1 in the lower stratosphere but it decreases rapidly above 35 km. It must be pointed out that the hydroxyl concentration plays an important role since the HNO₃ and thus NO₃ and NO are very sensitive to OH. The hydrogen-oxygen atmosphere must thus be studied carefully since an introduction of water vapor or methane in the lower stratosphere reduces the concentration of nitrogen oxides. An example of calculated NO, NO₂ and HNO₃ distributions is shown on fig. 14.

In order to treat the general problem of nitrogen oxides, NO, NO₂ and N₂O₅ must also be introduced. Their principal reactions are (see Brasseur and Nicolet [11])

- (b_3): $\text{NO}_2 + \text{O}_3 \rightarrow \text{NO}_3 + \text{O}_2$
- (b_{19}): $\text{NO}_3 + h\nu \rightarrow \text{NO}_2 + \text{O} + \text{NO} + \text{O}_2$
- (b_{11}): $\text{NO}_3 + \text{NO} \rightarrow 2 \text{NO}_2$
- (b_{12}): $\text{NO}_3 + \text{NO}_2 + \text{M} \rightarrow \text{N}_2\text{O}_5 + \text{M}$
- (b_{31}): $\text{N}_2\text{O}_5 + \text{H}_2\text{O} \rightarrow 2\text{HNO}_3$
- (b_{32}): $\text{N}_2\text{O}_5 \rightarrow \text{NO}_2 + \text{NO}_3$

(continued)
Fig. 13. - Vertical distribution in the stratosphere of the ratio $n(\text{HNO}_3)/n(\text{NO}_2)$ for a solar zenith angle of 60° and assuming two different ratios $n(\text{OH})/n(\text{NO}_2)$.

Fig. 14. - Vertical distribution of NO, NO$_2$ and HNO$_3$ calculated for two different values of the lower boundary condition of NO$_y$ = NO + NO$_2$ + HNO$_3$ and assuming a solar zenith angle of 60°, $n(\text{OH}) = n(\text{NO}_2)$ and $K = K_{\text{min}}$.
Photochemical assumptions give
\[
\begin{align*}
n(\text{NO}) &= b_0 n(O_2) n(\text{NO}) + b_{32} n(N_2) + b_{22} n(\text{OH}) n(\text{NO}) \\
&\quad + b_{10} n(\text{H}^+) n(\text{NO}) + b_{12} n(\text{NO})
\end{align*}
\]
and
\[
\begin{align*}
n(N_2) &= b_{12} n(M) n(\text{NO}) n(\text{NO}) + b_{32} n(\text{H}_2) + b_{11} n(\text{NO})
\end{align*}
\]

5. CONCLUSION

The effect of nitrogen oxides on ozone cannot be neglected in the lower stratosphere. In general, the \(\text{NO}_x \) chemistry can be explained considering only the oxygen atmosphere. However, hydrogen compounds play an important role in the formation of nitric acid by \(\text{OH} \) and therefore there is a need to introduce all. Aeronomic reactions dealing with the formation and destruction of hydroxyl and hydroperoxyl radicals. Since the ratio between the \(\text{OH} \) and \(\text{H}_2 \) distribution is sensitive to the nitrogen and carbon oxides chemistry, a general aeronomic model of the stratosphere must be built.

New values of the important rate constants and cross sections with quantum yields are needed as well as new experimental data such as the recent measurements of \(\text{NO}_x \) by Ackerman and Muller [20] of \(\text{HNO}_3 \) by Murray et al [21] of \(\text{NO}_2 \) and \(\text{HNO}_3 \) by Harries [22] of \(\text{CO} \) by Seiler and Warneck [23] and of \(\text{CH}_x \) by Ehnhall and Heidt [24].

REFERENCES

[15] CALLAAR, A.B. and PILLET, M.J., Fluorescence of nitric oxide, Part 2, Predissociation and cascade quenching in NO D\(^2\)\(^2\)p (V = 0) and NO D\(^2\)\(^2\)p (V = 0) and the oscillator strengths of the \(\epsilon(0,0) \) and \(\epsilon(0,0) \) bands, Trans. Faraday Soc. 66, 1966, 1970.
ACKNOWLEDGEMENTS

I would like to express my gratitude to Professor M. NICOLET for his valuable advice during the preparation of this work.

Discussion on the Paper
CHEMICAL KINETICS IN THE STRATOSPHERE
(Paper 7)
presented by
G. Brasseur

A. Goldberg

This question applies to all of the NOx chemistry papers. What is the implication or next step if Schiff's data, table 7, paper 1, NO concentration in the stratosphere equal to 0.1 ppb, turns out to be correct?

G. Brasseur

There is still an uncertainty in the NO2 - HNO3 ratio since it is very sensitive to the hydroxyl radicals concentration which is not well known at the tropopause level. Thus the calculated values of NO, NO2 and HNO3 could slightly change if the OH concentration used in our model had to be modified.

But before trying to explain Schiff's data by the theory, we have to wait for other measurements, for example the data obtained with Girard and Farmer's instruments. Preliminary data seem to show values of NO which are higher than the results communicated by Schiff.