Show simple item record

dc.contributor.authorLamy, H.
dc.contributor.authorNiyonzima, I.
dc.contributor.authorRochus, P.
dc.contributor.authorRochus, V.
dc.contributor.editor
dc.date2010
dc.date.accessioned2016-03-30T12:01:17Z
dc.date.available2016-03-30T12:01:17Z
dc.identifier.urihttps://orfeo.kbr.be/handle/internal/3180
dc.descriptionThe Belgian Institute of Space Aeronomy (BIRA-IASB), "Centre Spatial de Lige" (CSL), "Laboratoire de Techniques Aronautiques et Spatiales" (LTAS) of University of Lige, and the Microwave Laboratory of University of Louvain-La-Neuve (UCL) are collaborating in order to develop a miniature version of a xylophone bar magnetometer (XBM) using Microelectromechanical Systems (MEMS) technology. The device is based on a classical resonating xylophone bar. A sinusoidal current is supplied to the bar oscillating at the fundamental transverse resonant mode of the bar. When an external magnetic field is present, the resulting Lorentz force causes the bar to vibrate at its fundamental frequency with an amplitude directly proportional to the vertical component of the ambient magnetic field. In this paper we illustrate the working principles of the XBM and the challenges to reach the required sensitivity in space applications (measuring magnetic fields with an accuracy of approximately of 0.1 nT). The optimal dimensions of the MEMS XBM are discussed as well as the constraints on the current flowing through the bar. Analytical calculations as well as simulations with finite element methods have been used. Prototypes have been built in the Microwave Laboratory using silicon on insulator (SOI) and bulk micromachining processes. Several methods to accurately measure the displacement of the bar are proposed. © 2010 Elsevier Ltd. All rights reserved.
dc.languageeng
dc.titleA xylophone bar magnetometer for micro/pico satellites
dc.typeArticle
dc.subject.frascatiPhysical sciences
dc.audienceScientific
dc.subject.freeAnalytical calculation
dc.subject.freeBulk- micromachining
dc.subject.freeCurrent flowing
dc.subject.freeExternal magnetic field
dc.subject.freeFinite element simulations
dc.subject.freeFundamental frequencies
dc.subject.freeLorentz
dc.subject.freeMicroelectromechanical-systems technologies
dc.subject.freeMiniature version
dc.subject.freeResonant mode
dc.subject.freeSilicon-on-insulators
dc.subject.freeSinusoidal currents
dc.subject.freeVertical component
dc.subject.freeWorking principles
dc.subject.freeComposite micromechanics
dc.subject.freeFinite element method
dc.subject.freeLorentz force
dc.subject.freeMagnetism
dc.subject.freeMagnetometers
dc.subject.freeMEMS
dc.subject.freeMicroelectromechanical devices
dc.subject.freeMicromachining
dc.subject.freeSpace applications
dc.subject.freeMagnetic field effects
dc.source.titleActa Astronautica
dc.source.volume67
dc.source.issue7-8
dc.source.page793-809
Orfeo.peerreviewedYes
dc.identifier.doi10.1016/j.actaastro.2010.05.008
dc.identifier.scopus2-s2.0-78049446465


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record